In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,...In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.展开更多
Lithium(Li)metal is the most promising electrode for next-gene ration rechargeable batteries.In order to push the commercialization of the lithium metal batteries,a kind of nitrogen(N)-doped composite graphene(NCG)ado...Lithium(Li)metal is the most promising electrode for next-gene ration rechargeable batteries.In order to push the commercialization of the lithium metal batteries,a kind of nitrogen(N)-doped composite graphene(NCG)adopted as the Li plating host was prepared to regulate Li metal nucleation and suppress dendrite growth.Furthermore,a new kind of sandwich-type composite lithium metal(STCL)electrode was developed to improve its application.The STCL electrode can be used as convenient as a piece of Li foil but no dendrite growth.In a symmetric battery,the STCL electrode cycled for more than 4500 h with the overpotential of less than 40 mV.And due to the creative design,the STCL promises the Li-S battery with a prolonged cycling lifespan.展开更多
基金supported by the Russian Science Foundation as part of joint project of RSF-NSFC no.21-43-00006“Polysulfide IonSolvent Complexes and Their Electrochemical Behavior in Lithium-Sulfur Batteries”with the National Natural Science Foundation of China(22061132002)。
文摘In lithium-sulfur batteries,cell design,specifically electrolyte design,has a key impact on the battery performance.The effect of lithium salt anion donor number(DN)(DN[PF_(6)]^(-)=2.5,DN[N(SO_(2)CF_(3))_(2)]^(-)=5.4,DN[ClO_(4)]^(-)=8.4,DN[SO_(3)CF_(3)]^(-)=16.9,and DN[NO_(3)]^(-)=21.1)on the patterns of lithium-sulfur batteries and lithium metal electrode performances with sulfola ne-based electrolytes is investigated.An increase in DN of lithium salt anions leads to an increase in the depth and rate of electrochemical reduction of sulfur and long-chain lithium polysulfides and to a decrease in those for medium-and short-chain lithium polysulfides.DN of lithium salt anions has weak effect on the discharge capacity of lithium-sulfur batteries and the Coulomb efficiency during cycling,with the exception of LiSO_(3)CF_(3)and LiNO_(3).An increase in DN of lithium salt anions leads to an increase in the cycling duration of lithium metal anodes and to a decrease in the presence of lithium polysulfides.In sulfolane solutions of LiNO_(3)and LiSO_(3)CF_(3),lithium polysulfides do not affect the cycling duration of lithium metal anodes.
基金financially supported by the Beijing Municipal Science and Technology Project(Nos.Z171100000917021 and Z181100004518003)。
文摘Lithium(Li)metal is the most promising electrode for next-gene ration rechargeable batteries.In order to push the commercialization of the lithium metal batteries,a kind of nitrogen(N)-doped composite graphene(NCG)adopted as the Li plating host was prepared to regulate Li metal nucleation and suppress dendrite growth.Furthermore,a new kind of sandwich-type composite lithium metal(STCL)electrode was developed to improve its application.The STCL electrode can be used as convenient as a piece of Li foil but no dendrite growth.In a symmetric battery,the STCL electrode cycled for more than 4500 h with the overpotential of less than 40 mV.And due to the creative design,the STCL promises the Li-S battery with a prolonged cycling lifespan.