期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
In-situ determination of onset lithium plating for safe Li-ion batteries 被引量:5
1
作者 Lei Xu Yi Yang +6 位作者 Ye Xiao Wen-Long Cai Yu-Xing Yao Xiao-Ru Chen Chong Yan Hong Yuan Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期255-262,共8页
Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since ... Lithium plating in working batteries has attracted wide attention in the exploration of safe energy storage. Establishing an effective and rapid early-warning method is strongly considered but quite challenging since lithium plating behavior is determined by diverse factors. In this contribution, we present a non-destructive electrochemical detection method based on transient state analysis and threeelectrode cell configuration. Through dividing the iR drop value by the current density, the as-obtained impedance quantity(R_(i)) can serve as a descriptor to describe the change of electrochemical reaction impedance on the graphite anode. The onset of lithium plating can be identified from the sharp drop of R_(i). Once the dendritic plated lithium occurs, the extra electrochemical reactions at the lithium interfaces leads to growing active area and reduced surface resistance of the anode. We proposed a protocol to operate the batteries under the limited capacity, which renders the cell with 98.2% capacity retention after 1000 cycles without lithium plating. The early-warning method has also been validated in in-situ optical microscopy batteries and practical pouch cells, providing a general but effective method for online lithium plating detection towards safe batteries. 展开更多
关键词 lithium plating In-situ detection method Transient state analysis iR drop Three-electrode battery lithium-ion batteries
下载PDF
Electrolyte inhomogeneity induced lithium plating in fast charging lithium-ion batteries 被引量:1
2
作者 Yi Yang Lei Xu +2 位作者 Shi-Jie Yang Chong Yan Jia-Qi Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期394-399,I0010,共7页
Fast charging capability of lithium-ion batteries is in urgent need for widespread economic success of electric vehicles. However, the application of the fast charging technology often leads to the inevitable lithium ... Fast charging capability of lithium-ion batteries is in urgent need for widespread economic success of electric vehicles. However, the application of the fast charging technology often leads to the inevitable lithium plating on the graphite anode, which is one of the main culprits that endanger battery safety and shorten battery lifespan. The in-depth understanding of the initiation of lithium metal nucleation and the following plating behavior is a key to the development of fast charging cells. Herein, we investigate the overlooked effect of the non-uniform distribution of electrolyte on lithium plating during fast charging. Prior lithium plating occurs on the saturated lithium-graphite compounds in the anode region with sufficient electrolyte since the lithium-ion transport is blocked in the anode region lacking electrolyte. The uniform distribution of electrolyte is crucial for the construction of safe lithium-ion batteries especially in fast charging scenarios. 展开更多
关键词 Fast charging lithium-ion batteries lithium plating Distribution of electrolyte INHOMOGENEITY
下载PDF
Research on the impact of high-temperature aging on the thermal safety of lithium-ion batteries 被引量:4
3
作者 Guangxu Zhang Xuezhe Wei +5 位作者 Siqi Chen Gang Wei Jiangong Zhu Xueyuan Wang Guangshuai Han Haifeng Dai 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期378-389,I0010,共13页
Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates... Understanding the thermal safety evolution of lithium-ion batteries during high-temperature usage conditions bears significant implications for enhancing the safety management of aging batteries.This work investigates the thermal safety evolution mechanism of lithium-ion batteries during high-temperature aging.Similarities arise in the thermal safety evolution and degradation mechanisms for lithium-ion batteries undergoing cyclic aging and calendar aging.Employing multi-angle characterization analysis,the intricate mechanism governing the thermal safety evolution of lithium-ion batteries during high-temperature aging is clarified.Specifically,lithium plating serves as the pivotal factor contributing to the reduction in the self-heating initial temperature.Additionally,the crystal structure of the cathode induced by the dissolution of transition metals and the reductive gas generated during aging attacking the crystal structure of the cathode lead to a decrease in thermal runaway triggering temperature.Furthermore,the loss of active materials and active lithium during aging contributes to a decline in both the maximum temperature and the maximum temperature rise rate,ultimately indicating a decrease in the thermal hazards of aging batteries. 展开更多
关键词 lithium-ion batteries High-temperature aging Thermal safety DEGRADATION lithium plating
下载PDF
Polar interaction of polymer host-solvent enables stable solid electrolyte interphase in composite lithium metal anodes 被引量:3
4
作者 Peng Shi Ze-Yu Liu +10 位作者 Xue-Qiang Zhang Xiang Chen Nan Yao Jin Xie Cheng-Bin Jin Ying-Xin Zhan Gang Ye Jia-Qi Huang Stephens IfanE L Titirici Maria-Magdalena Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期172-178,I0006,共8页
The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrit... The lithium(Li) metal anode is an integral component in an emerging high-energy-density rechargeable battery.A composite Li anode with a three-dimensional(3 D) host exhibits unique advantages in suppressing Li dendrites and maintaining dimensional stability.However,the fundamental understanding and regulation of solid electrolyte interphase(SEI),which directly dictates the behavior of Li plating/stripping,are rarely researched in composite Li metal anodes.Herein,the interaction between a polar polymer host and solvent molecules was proposed as an emerging but effective strategy to enable a stable SEI and a uniform Li deposition in a working battery.Fluoroethylene carbonate molecules in electrolytes are enriched in the vicinity of a polar polyacrylonitrile(PAN) host due to a strong dipole-dipole interaction,resulting in a LiF-rich SEI on Li metal to improve the uniformity of Li deposition.A composite Li anode with a PAN host delivers 145 cycles compared with 90 cycles when a non-polar host is employed.Moreover,60 cycles are demonstrated in a 1:0 Ah pouch cell without external pressure.This work provides a fresh guidance for designing practical composite Li anodes by unraveling the vital role of the synergy between a 3 D host and solvent molecules for regulating a robust SEI. 展开更多
关键词 lithium metal Polar interaction Solid electrolyte interphase lithium plating Composite anode
下载PDF
High-valence sulfur-containing species in solid electrolyte interphase stabilizes lithium metal anodes in lithium–sulfur batteries 被引量:2
5
作者 Li-Peng Hou Li-Yang Yao +4 位作者 Chen-Xi Bi Jin Xie Bo-Quan Li Jia-Qi Huang Xue-Qiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第5期300-305,共6页
The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for... The interfacial stability of lithium metal anodes dictated by solid electrolyte interphase(SEI) is essential for long-cycling high-energy-density lithium–sulfur batteries. Nevertheless, critical components of SEI for interfacial stabilization are particularly indistinct. Herein, the effect of various sulfur-containing components in SEI for stabilizing lithium metal anodes is disclosed in lithium–sulfur batteries. High-valence sulfur-containing species(Li_(2)SO_(3) and Li_(2)SO_(4)) in SEI are conducive to uniform lithium deposition and stabilizing lithium metal anodes. In contrast, low-valence sulfur-containing species(Li_(2)S_(3) and Li_(2)S_(4)) in SEI result in aggressive lithium dendrites and dead lithium. This work identifies the role of sulfurcontaining components in SEI for stabilizing lithium metal anodes and provides rational design principles of SEI for protecting lithium metal anodes in practical lithium–sulfur batteries. 展开更多
关键词 lithium–sulfur batteries lithium anode Solid electrolyte interphase lithium plating Practical conditions
下载PDF
Unrevealing the effects of low temperature on cycling life of 21700-type cylindrical Li-ion batteries 被引量:5
6
作者 Daozhong Hu Gang Chen +8 位作者 Jun Tian Ning Li Lai Chen Yuefeng Su Tinglu Song Yun Lu Duanyun Cao Shi Chen Feng Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期104-110,共7页
The low-temperature performance of Li-ion batteries(LIBs) has important impacts on their commercial applications. Besides the metallic lithium deposition, which is regarded as one of the main failure mechanisms of the... The low-temperature performance of Li-ion batteries(LIBs) has important impacts on their commercial applications. Besides the metallic lithium deposition, which is regarded as one of the main failure mechanisms of the LIBs at low temperatures, the synergistic effects originating from the cathode, anode, electrolyte, and separators to the batteries are still not clear. Here, the 21700-type cylindrical batteries were evaluated at a wide range of temperatures to investigate the failure mechanism of batteries. Voltage relaxation, and the post-mortem analysis combined with the electrochemical tests, unravel that the capacity degradation of batteries at low temperature is related to the lithium plating at graphite anodes,the formation of unsatisfied solid deposited/decomposed electrolyte mixture phase on the anode, the precipitation of solvent in the electrolytes and the block of separator pores, and the uneven dissolved transition metal-ions from the cathode. We hope this finding may open up a new avenue to alleviate the capacity degradation of advanced LIBs at low temperatures and shed light on the development of outstanding low-temperature LIBs via simultaneous optimization of all the components including electrodes, electrolytes and separators. 展开更多
关键词 Low temperature Cycling life lithium plating Solid deposited/decomposed electrolyte mixture phase Voltage relaxation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部