NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and t...NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.展开更多
Physical and mechanical properties variations of lithium slag were systematically investigated by three different ways such as physical, chemical activation, physical-chemical combined activation. Mechanisms of the ce...Physical and mechanical properties variations of lithium slag were systematically investigated by three different ways such as physical, chemical activation, physical-chemical combined activation. Mechanisms of the cementitious properties and hydration process of lithium slag composite cement were studied by XRD and SEM. The results showed that specific surface area increased from 254 to 700 m2/kg while median particle size decreased from 14.97 to 8.45 urn with the increase of grinding time. Physical, chemical activation and combined activation improved the strength and hydration degree of lithium slag composite cement. Compared with original lithium slag, the flexural strength and compressive strength of mortars were improved significantly with the increase of grinding time. A higher strength of the cement with the lithium slag was attained; The sample with 10% lithium slag got the highest strength when the grinding time was 10 min; the compressive strength was higher than OPC at 28 days, which increased by 12.3%. When the Na2SO4 content was 0.6%, the compressive strength increased by 1.4%; when the Al2(SO4)3·18H2O content was 0.4%, the compressive strength increased by 5.8% at 28 days. Compared with the late strength, the improving degree of early strength was larger with the incorporation of activator. The results of XRD and SEM were consistent with the results of mechanical properties; it is also evident that lithium slag composite cement hydration products were mainly AFt, Ca(OH)2, CaSO4·2H2O, and C-S-H gel.展开更多
Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li ...Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li were leached under optimal experimental conditions:acid concentration of 82 wt.%,acid-to-slag mass ratio of 1.5:1,roasting temperature of 800°C,and roasting time of 2 h.During the roasting process,the manganese-rich slag first reacted with concentrated sulfuric acid,producing MnSO_(4),MnSO_(4)·H_(2)O,Li_(2)Mg(SO_(4))_(2),Al_(2)(SO_(4))_(3),and H_(4)SiO_(4).With the roasting temperature increasing,H_(4)SiO_(4) and Al_(2)(SO_(4))_(3) decomposed successively,resulting in generation of mullite and spinel.The mullite formation aided in decreasing the leaching efficiencies of Al and Si,while increasing the Li leaching efficiency.The formation of spinel,however,decreased the leaching efficiencies of Mn and Li.展开更多
基金Project(JS-211)supported by the State-Owned Enterprise Electric Vehicle Industry Alliance,China
文摘NA novel smelting reduction process based on FeO-SiO2-Al2O3 slag system for spent lithium ion batteries with Al cans was developed, while using copper slag as the only slag former. The feasibility of the process and the mechanism of copper loss in slag were investigated. 98.83% Co, 98.39% Ni and 93.57% Cu were recovered under the optimum conditions of slag former/battery mass ratio of 4.0:1, smelting temperature of 1723 K, and smelting mass ratio of time of 30 min. The FeO-SiO2-Al2O3 slag system for the smelting process is appropriate under the conditions of m(FeO):m(SiO2)=0.58:1?1.03:1, and 17.19%?21.52% Al2O3 content. The obtained alloy was mainly composed of Fe-Co-Cu-Ni solid solution including small amounts of matte. The obtained slag mainly consisted of fayalite and hercynite. Meanwhile, the mechanism of copper loss is the mechanical entrainment from strip-like fayalite particles in the main form of copper sulfide and metallic copper.
基金Funded partly by the National Natural Science Foundation of China(Nos.51378408,51408448)State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2013-07)
文摘Physical and mechanical properties variations of lithium slag were systematically investigated by three different ways such as physical, chemical activation, physical-chemical combined activation. Mechanisms of the cementitious properties and hydration process of lithium slag composite cement were studied by XRD and SEM. The results showed that specific surface area increased from 254 to 700 m2/kg while median particle size decreased from 14.97 to 8.45 urn with the increase of grinding time. Physical, chemical activation and combined activation improved the strength and hydration degree of lithium slag composite cement. Compared with original lithium slag, the flexural strength and compressive strength of mortars were improved significantly with the increase of grinding time. A higher strength of the cement with the lithium slag was attained; The sample with 10% lithium slag got the highest strength when the grinding time was 10 min; the compressive strength was higher than OPC at 28 days, which increased by 12.3%. When the Na2SO4 content was 0.6%, the compressive strength increased by 1.4%; when the Al2(SO4)3·18H2O content was 0.4%, the compressive strength increased by 5.8% at 28 days. Compared with the late strength, the improving degree of early strength was larger with the incorporation of activator. The results of XRD and SEM were consistent with the results of mechanical properties; it is also evident that lithium slag composite cement hydration products were mainly AFt, Ca(OH)2, CaSO4·2H2O, and C-S-H gel.
基金supported by the National Natural Science Foundation of China (No.51704038)the State-Owned Enterprise Electric Vehicle Industry Alliance,China (No.JS-211)the Changsha Science and Technology Project,China (No.kq1602212)。
文摘Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li were leached under optimal experimental conditions:acid concentration of 82 wt.%,acid-to-slag mass ratio of 1.5:1,roasting temperature of 800°C,and roasting time of 2 h.During the roasting process,the manganese-rich slag first reacted with concentrated sulfuric acid,producing MnSO_(4),MnSO_(4)·H_(2)O,Li_(2)Mg(SO_(4))_(2),Al_(2)(SO_(4))_(3),and H_(4)SiO_(4).With the roasting temperature increasing,H_(4)SiO_(4) and Al_(2)(SO_(4))_(3) decomposed successively,resulting in generation of mullite and spinel.The mullite formation aided in decreasing the leaching efficiencies of Al and Si,while increasing the Li leaching efficiency.The formation of spinel,however,decreased the leaching efficiencies of Mn and Li.