期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Spinel lithium titanate (Li_4Ti_5O_(12)) as novel anode material for room-temperature sodium-ion battery 被引量:13
1
作者 Zhao Liang Pan Hui-Lin +2 位作者 Hu Yong-sheng Li Hong Chen Li-quan 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第2期32-35,共4页
This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an aver... This is the first time that a novel anode material, spinel Li4Ti5O12 which is well known as a "zero-strain" anode material for lithium storage, has been introduced for sodium-ion battery. The Li4Ti5O12 shows an average Na storage voltage of about 1.0 V and a reversible capacity of about 145 mAh/g, thereby making it a promising anode for sodiumion battery. Ex-situ X-ray diffraction (XRD) is used to investigate the structure change in the Na insertion/deinsertion process. Based on this, a possible Na storage mechanism is proposed. 展开更多
关键词 SPINEL lithium titanate li4ti5o12 sodium-ion battery
下载PDF
An ultrathin and continuous Li_4Ti_5O_(12) coated carbon nanofiber interlayer for high rate lithium sulfur battery 被引量:4
2
作者 Decheng An Lu Shen +5 位作者 Danni Lei Lehong Wang Heng Ye Baohua Li Feiyu Kang Yan-Bing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第4期19-26,共8页
Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(... Severe capacity fading and poor high rate performance of lithium sulfur(Li–S) battery caused by "shuttle effect" and low conductivity of sulfur hampers its further developments and applications. Li_4Ti_5O_(12) (LTO)possesses high lithium ion conductivity, and it is also can be used as an active adsorbent for polysulfide. Herein, fine LTO particle coated carbon nanofibers(CNF) were prepared and a conductive network both for electron and lithium ion was built, which can greatly promote the electrochemical conversion of polysulfide and improve the rate performance of Li–S batteries. Meanwhile, a quantity of adsorption sites is constructed by defects of the surface of LTO-CNF membrane to effectively immobilize polysulfide. The multifunctional LTO-CNF interlayer could impede the shuttle effect and enhance comprehensive electrochemical performance of Li–S batteries, especially high rate performance. With such LTO-CNF interlayer,the Li–S battery presents a specific capacity of 641.9 mAh/g at 5 C rate. After 400 cycles at 1 C, a capacity of 618.0 mAh/g is retained. This work provides a feasible strategy to achieve high performance of Li–S battery for practical utilization. 展开更多
关键词 lithium sulfur batteries li4ti5o12 (LTo) INTERLAYER PoLYSULFIDE ADSoRBENT PoLYSULFIDE conversion
下载PDF
Nanosized Spinel Li4Ti5O12 Anode Material Prepared by Gel-polymer Method using Furfuryl Alcohol as Polymerizable Solvent
3
作者 丁楚雄 白耀彩 +1 位作者 魏丛 陈春华 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第4期457-462,I0004,共7页
Nanosized Li4Ti5O12 powders are synthesized by a polymerization-based method using ti- tanium butoxide and lithium nitrate as precursors and furfuryl alcohol as a polymerizable solvent. The prepared samples are charac... Nanosized Li4Ti5O12 powders are synthesized by a polymerization-based method using ti- tanium butoxide and lithium nitrate as precursors and furfuryl alcohol as a polymerizable solvent. The prepared samples are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Braunauer-Emmett-Teller (BET) analysis. The electrochemical performances of these Li4Ti5O12 powders are also studied. The effect of different surfactants including citric acid, polyvinylpyrrolidone, and cetyltrimethyl ammonium bromide on the structure and properties is also investigated. It is found that pure spinel phase of Li4Ti5O12 is obtained at an annealing temperature of 700 ℃ or higher. The use of surfactants can improve the powder morphology of nanosized particles with less agglomeration. With suitable annealing temperature and the addition of surfaetant, Li4Ti5O12 powders with high BET surface area and favorable electrochemical performance can be obtained. 展开更多
关键词 Polymerization process lithium ion battery li4ti5o12 Nanoparticle Rate performance
下载PDF
Erratum to "Spinel lithium titanate (Li_4Ti_5O_(12)) as novel anode material for room-temperature sodium-ion battery"
4
作者 赵亮 潘慧霖 +2 位作者 胡勇胜 李泓 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第7期627-627,共1页
关键词 SPINEL lithium titanate li4ti5o12 sodium-ion battery
全文增补中
Preparation and characterization of SnO_2-Li_4Ti_5O_(12) composite by sol-gel technique 被引量:1
5
作者 熊利芝 何则强 +1 位作者 尹周澜 陈启元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期267-270,共4页
SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis... SnO2-Li4Ti5O12 was prepared by sol-gel method using tin tetrachloride,lithium acetate,tetrabutylorthotitanate and aqueous ammonia as starting materials.The composite was characterized by thermogravimertric(TG)analysis and differential thermal analysis(DTA),X-ray diffractometry(XRD)and transmission electron microscopy(TEM)combined with electrochemical tests.The results show that SnO2-Li4Ti5O12 composite derived by sol-gel technique is a nanocomposite with core-shell structure, and the amorphous Li4Ti5O12 layer with 20?40 nm in thickness is coated on the surface of SnO2 particles.Electrochemical tests show that SnO2-Li4Ti5O12 composite delivers a reversible capacity of 688.7 mA·h/g at 0.1C and 93.4%of that is retained after 60 cycles at 0.2C.The amorphous Li4Ti5O12 in composite can accommodate the volume change of SnO2 electrode and prevent the small and active Sn particles from aggregating into larger and inactive Sn clusters during the cycling effectively,and enhance the cycling stability of SnO2 electrode significantly. 展开更多
关键词 SNo2 li4ti5o12 CoMPoSITE sol-gel method lithium ion batteries
下载PDF
Ab initio studies on n-type and p-type Li_4Ti_5O_(12) 被引量:1
6
作者 钟志勇 聂正新 +3 位作者 杜燕兰 欧阳楚英 施思齐 雷敏生 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第6期2492-2497,共6页
This paper studies the structure and electronic properties of Li4Ti5O12, as anode material for lithium ion batteries, from first principles calculations. The results suggest that there are two kinds of unit cell of Li... This paper studies the structure and electronic properties of Li4Ti5O12, as anode material for lithium ion batteries, from first principles calculations. The results suggest that there are two kinds of unit cell of Li4Ti5O12: n-type and p-type. The two unit cells have different structures and electronic properties: the n-type with two 16d site Li ions is metallic by electron, while the p-type with three 16d Li ions is metallic by hole. However, the Li4Ti5O12 is an insulator. It is very interesting that one n-type cell and two p-type cells constitute one Li4Ti5O12 supercell which is insulating. The results show that the intercalation potential obtained with a p-type unit cell with one additional electron is quite close to the experimental value of 1.5 V. 展开更多
关键词 lithium ion batteries li4ti5o12 anode intercalation potential spinel structure
下载PDF
Synthesis and electrochemical properties of LiMn_2O_4/Li_4Ti_5O_(12) composite
7
作者 何则强 熊利芝 +2 位作者 吴显明 陈上 黄可龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期257-261,共5页
LiMn2O4/Li4Ti5O12 composite was synthesized by in-situ composite technique using LiMn2O4,lithium acetate,tetrabutyl titanate as starting materials and characterized by various electrochemical methods in combination wi... LiMn2O4/Li4Ti5O12 composite was synthesized by in-situ composite technique using LiMn2O4,lithium acetate,tetrabutyl titanate as starting materials and characterized by various electrochemical methods in combination with X-ray diffractometry(XRD), infrared(IR)spectroscopy and scanning electron microscopy(SEM).The results show that Li4Ti5O12 is coated on the surface of crystalline LiMn2O4 to form LiMn2O4/Li4Ti5O12 composite.The structure of LiMn2O4 does not change due to the introduction of Li4Ti5O12.By being coated with Li4Ti5O12,the rate capability and high temperature cyclability of LiMn2O4 is improved greatly.At room temperature,the discharge capacity of LiMn2O4/Li4Ti5O12 composite is more than 108.4 mA·h/g and the capacity loss per cycle is only 0.053%after 20 cycles at 2.0C.While at 55℃,the discharge capacity of LiMn2O4/Li4Ti5O12 composite is more than 109.9 mA·h/g and the capacity loss per cycle is only 0.036%after 60 cycles at 1.0C. 展开更多
关键词 li4ti5o12 liMN2o4 in-situ composite technique lithium ion batteries
下载PDF
In situ polymerization preparation and characterization of Li_4Ti_5O_(12)-polyaniline anode material
8
作者 何则强 熊利芝 +3 位作者 陈上 吴显明 刘文萍 黄可龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第S1期262-266,共5页
Li4Ti5O12 powders were prepared by so-gel method using tetrabutyl titanate,lithium acetate and absolute alcohol as starting materials.Li4Ti5O12-polyaniline(Li4Ti5O12-PAn)composite was prepared by in situ polymerizatio... Li4Ti5O12 powders were prepared by so-gel method using tetrabutyl titanate,lithium acetate and absolute alcohol as starting materials.Li4Ti5O12-polyaniline(Li4Ti5O12-PAn)composite was prepared by in situ polymerization method using aniline, ammonium persulfate and hydrochloricarried as starting materials.Li4Ti5O12-PAn composite was characterized by X-ray diffractometry(XRD),infrared spectrum(IR)combined with electrochemical tests.The results show that the electrical conductivity is enhanced obviously due to the introduction of PAn to Li4Ti5O12.Li4Ti5O12-PAn composite exhibits better high-rate capability and cyclability than Li4Ti5O12.The composite can deliver a specific capacity of 191.3 and 148.9 mA·h/g,only 0.13%and 0.61%of the capacity is lose after being discharged 80 times at 0.1C and 2.0C,respectively. 展开更多
关键词 li4ti5o12 PoLYANIliNE in situ polymerization method lithium ion batteries
下载PDF
Single Phase Li<SUB>4</SUB>Ti<SUB>5</SUB>O<SUB>12</SUB>Synthesis for Nanoparticles by Two Steps Sintering
9
作者 Toshihito Ohtake 《Journal of Materials Science and Chemical Engineering》 2015年第2期5-10,共6页
Li4Ti5O12 has been noticed about a negative electrode of a high powered and safe lithium ion secondary battery. These properties require single phase, high crystallization, larger specific surface area and fine nanopa... Li4Ti5O12 has been noticed about a negative electrode of a high powered and safe lithium ion secondary battery. These properties require single phase, high crystallization, larger specific surface area and fine nanoparticles. This study carried out the noble synthesis of Li4Ti5O12 using a solid phase synthesis by two steps sintering. These results showed Li4Ti5O12 of 6.1 m2&middotg-1?and diameter of 110 nm with the single phase and high crystallization. Li2TiO3 will play an important role in this reaction, obtained by pre-sintering as a precursor. 展开更多
关键词 lithium Ion Secondary Battery li4ti5o12 Solid Phase SYNTHESIS SINTERING NANoPARtiCLE
下载PDF
Factors affecting specific capacity and rate performance of aqueous Li4Ti5O12 battery
10
作者 XU Limin WANG Jingjie Yang Bing 《Baosteel Technical Research》 CAS 2019年第4期39-47,共9页
The use of an aqueous slurry in the manufacture of lithium ion batteries has the advantages of being environmentally friendly,harmless to the human body,and low in production cost.In this study,the factors affecting t... The use of an aqueous slurry in the manufacture of lithium ion batteries has the advantages of being environmentally friendly,harmless to the human body,and low in production cost.In this study,the factors affecting the specific capacity and rate performance of the aqueous Li4Ti5O12 battery were studied,including the Li4Ti5O12 structure,aqueous binder,conductive agent,and surface density.The results show that a spherical secondary particle structure of Li4Ti5O12 is beneficial to its discharge rate performance.In addition,an aqueous binder with high conductivity improves the specific capacity and high rate charge/discharge performance of the battery,and when the amount of binder is 3%,the Li4Ti5O12 battery performs better.A chain structure in the conductive agent also improves the specific capacity and discharge rate performance of the Li4Ti5O12 battery,and increases the degree to which the discharge rate performance of the conductive agent can be further improved.Lastly,the lower the surface density,the better the rate performance of the Li4Ti5O12 battery. 展开更多
关键词 aqueous lithium ion battery li4ti5o12 specific capacity rate performance
下载PDF
Hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area for high rate lithium ion batteries 被引量:11
11
作者 Jin Cheng Renchao Che Chongyun Liang Jiwei Liu Min Wang Junjie Xu 《Nano Research》 SCIE EI CAS CSCD 2014年第7期1043-1053,共11页
Large specific surface area is critical for Li4Ti5O12 to achieve good rate capacity and cycling stability, since it can increase the contact area between electrolyte/ electrode and shorten the transport paths for elec... Large specific surface area is critical for Li4Ti5O12 to achieve good rate capacity and cycling stability, since it can increase the contact area between electrolyte/ electrode and shorten the transport paths for electrons and lithium ions. In this study, hierarchical hollow Li4Ti5O12 urchin-like microspheres with ultra-high specific surface area of over 140 m2·g^-1 and diameter more than 500 nm have been successfully synthesized by combining the versatile sol-gel process and a hydrothermal reaction, and exhibit excellent electrochemical performance with a high specific capacity of 120 mA-h.g-1 at 20 C and long cycling stability of 〈 2% decay after 100 cycles. Ex situ electron energy loss spectroscopy (EELS) analysis of Li4Ti5O12 microspheres at different charge-discharge stages indicates that only a fraction of the TP* ions are reduced to Ti3+ and a phase transformation occurs whereby the spinel phase Li4TisO12 is converted into the rock-salt phase Li7Ti5O12. Even after 100 cycles, the oxidation-reduction reaction between Ti3+ and Ti4+ can be carried out much more effectively on the surface of Li4Ti5O12 nanosheets than on commercially available Li4Ti5O12 particles. All the results suggest that these Li4Ti5O12 microspheres may be attractive candidate anode materials for lithium ion batteries. 展开更多
关键词 li4ti5o12 urchin-like MICRoSPHERES EELS electrochemicalperformance lithium ion batteries
原文传递
In-situ construction of Li4Ti5O12/rutile TiO2 heterostructured nanorods for robust and high-power lithium storage
12
作者 Yiguang Zhou Shuhao Xiao +3 位作者 Jinxia Jiang Rui Wu Xiaobin Niu Jun Song Chen 《Nano Research》 SCIE EI CSCD 2023年第1期1513-1521,共9页
Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its“zero-strain”characteristic during the charge/discharge.However,the intrinsically low electronic conductivit... Li4Ti5O12 is considered as a safe and stable anode material for high-power lithium-ion batteries due to its“zero-strain”characteristic during the charge/discharge.However,the intrinsically low electronic conductivity leads to a deterioration in highrate performance,impeding its intensive application.Herein,the Li4Ti5O12/rutile TiO2(LTO/RT)heterostructured nanorods with tunable oxide phases have been in-situ fabricated by annealing the electrospun nanofiber precursor.By constructing such a heterostructured interface,the as-prepared sample delivers a high capacity of 160.3 mAh·g–1 at 1 C after 200 cycles,125.5 mAh·g–1 at 10 C after 500 cycles and a superior capacity retention of 90.3%after 1,000 cycles at 30 C,outperforming the heterostructure-free counterparts of pure LTO,RT and the commercial LTO product.Density Functional Theory calculation suggests a possible synergistic effect of the LTO/RT interface that would improve the electronic conductivity and Li-ion diffusion. 展开更多
关键词 HETERoSTRUCTURE li4ti5o12/rutile tio2 NANoRoDS density functional theory lithium storage
原文传递
Synthesis and characterization of Li_4Ti_5O_(12) via a hydrolysis process from TiCl_4 aqueous solution 被引量:1
13
作者 Xuan-Yu Wang Yun-Jiao Li +2 位作者 Cang Xu Long Kong Lin Li 《Rare Metals》 SCIE EI CAS CSCD 2014年第4期459-465,共7页
Spinel-type lithium and titanium composite oxide Li4TisO12 was successfully synthesized via a novel hydrolysis method followed by calcination using titanium tetrachloride (TIC14) and lithium hydroxide (LiOH.H2O) a... Spinel-type lithium and titanium composite oxide Li4TisO12 was successfully synthesized via a novel hydrolysis method followed by calcination using titanium tetrachloride (TIC14) and lithium hydroxide (LiOH.H2O) as raw materials. Three major factors, including LiOH con- centration, LiOH dosage, and hydrolysis temperature were studied for optimizing the synthetic conditions to obtain a phase-pure Li4Ti5012. The physical and electrochemical properties of samples were characterized by X-ray dif- fraction (XRD), thermogravimetric analysis (TGA), fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and constant current discharge-charge test. The FT-IR results indicate the presence of [TiO6] octahedra. The SEM images show that the Li4Ti5O12 pre- cursor obtained is an amorphous solid with an irregular and rough morphology. It is revealed that the phase-pure spinel Li4Ti5O12 powders with well crystallization and regular morphology can be obtained by calcining the precursor at 800 ℃ for 6 h. The constant current discharge-charge tests indicate that the Li4TisO12 material delivers an excellent cycling ability, maintaining 93.8 % of its initial specific capacity after 60 cycles at a current density of 0.5C. 展开更多
关键词 lithium ion battery titanium tetrachloride li4ti5o12 SYNTHESIS Hydrolysis method
原文传递
Preparation and characterization of Li_(4)Ti_(5)O_(12) synthesized using hydrogen titanate nanowire for hybrid super capacitor
14
作者 Jong Hyun KIM Jung Rag YOON 《Journal of Advanced Ceramics》 SCIE CAS 2013年第3期285-290,共6页
The electrical characteristics of hybrid super capacitor were evaluated by synthesizing LTO(Li_(4)Ti_(5)O_(12))using TiO_(2) having a hydrogen titanate nanowire form.Preparation of the hydrogen titanate nanowire was i... The electrical characteristics of hybrid super capacitor were evaluated by synthesizing LTO(Li_(4)Ti_(5)O_(12))using TiO_(2) having a hydrogen titanate nanowire form.Preparation of the hydrogen titanate nanowire was implemented by using TiO_(2) having size of 60 nm and NaOH,and performing synthesis at 70℃for 6 h with a sonochemical method.LTO compound was synthesized at 150℃for 36 h and at 180℃for 36 h respectively by using the hydrogen titanate nanowire and LiOH·H2O as starting materials with a hydrothermal method.The final LTO compound was synthesized at 700℃for 6 h using a solid-state method.As a result of manufacturing the hybrid super capacitor using LTO synthesized at 180℃for 36 h with the hydrothermal method,a capacity of 198 mA·h/g has been achieved compared to a theoretical capacity of 172 mA·h/g of existing LTO,and thus,the capacity has been increased by about 13%.Further,such excellent cycle performance has ensured its possibility as a high-capacity capacitor. 展开更多
关键词 LTo(li4ti5o12) lithium titanate oxide hydrogen titanate nanowire hybrid super capacitor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部