Graphene/manganese dioxide composites and grapheme/manganese dioxide/sulfur(G/MnO2/S) composite cathode were prepared by hydrothermal method and by vapor permeation, respectively. Their structure, morphology and speci...Graphene/manganese dioxide composites and grapheme/manganese dioxide/sulfur(G/MnO2/S) composite cathode were prepared by hydrothermal method and by vapor permeation, respectively. Their structure, morphology and specific surface area were characterized by X-ray diffraction, electron microanalysis and nitrogen adsorption analysis. The composites show morphology of nanosheets, high specific surface area and even distribution of sulfur. The sulfur accounts for 75% in the G/MnO2/S composite by thermogravimetric analysis. The electrochemical performance of G/S and G/MnO2/S cathode were investigated. The G/MnO2/S composite cathodes show excellent rate performance and cycle stability. At a 0.2C current density, initial discharge specific capacity is 1 061 m A·h·g^-1 and maintains 698 m A·h·g^-1 after 100 cycles;At a 1C current density, maximum discharge capacity reaches 816 m A·h·g^-1 and average capacity decreasing rate is only 0.073%/cycle after running over 400 cycles. Electrochemical mechanism of the composites cathodes was analyzed. The sulfur adsorption of Mn O2 inhibited the loss of active material sulfur, so, the electrochemical performance of the complex was improved.展开更多
In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a g...In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a gel formation, using maleic acid(CHO) as the carbon source, followed by annealing at low temperature of 270 °C. A uniform carbon network among the α-MnOnanoparticles was observed by transmission electron microscopy. When tested in a zinc cell, the α-MnO@C exhibited a high initial discharge capacity of 272 m Ah/g under 66 m A/g current density compared to 213 m Ah/g, at the same current density, displayed by the pristine sample. Further, α-MnO@C demonstrated superior cycleability compared to the pristine samples. This study may pave the way for the utilizing carbon-coated MnOelectrodes for aqueous ZIB applications and thereby contribute to realizing high performance eco-friendly batteries.展开更多
Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode m...Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode materials,manganese dioxide with high voltage,environmental protection,and high theoretical specific capacity receives considerable attention.However,the problems of structural instability,manganese dissolution,and poor electrical conductivity make the exploration of high-performance manganese dioxide still a great challenge and impede its practical applications.Besides,zinc storage mechanisms involved are complex and somewhat controversial.To address these issues,tremendous efforts,such as surface engineering,heteroatoms doping,defect engineering,electrolyte modification,and some advanced characterization technologies,have been devoted to improving its electrochemical performance and illustrating zinc storage mechanism.In this review,we particularly focus on the classification of manganese dioxide based on crystal structures,zinc ions storage mechanisms,the existing challenges,and corresponding optimization strategies as well as structure-performance relationship.In the final section,the application perspectives of manganese oxide cathode materials in AZIBs are prospected.展开更多
The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature. The prepared sample was characterized with X-ray diffraction(XRD), scanning electro...The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature. The prepared sample was characterized with X-ray diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller(BET) surface analysis, Fourier transform infrared(FTIR) spectrometry, cyclic voltammetry, alternative current(AC) impedance test and battery discharge test. It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area. The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution, and exhibits larger discharge capacity than EMD, especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.展开更多
Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their s...Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their safety, biodegradability, biocompatibility, environmental benignancy, and low cost. With respect to these advances, a flexible alkaline zinc-manganese dioxide (Zn-MnO2) battery is fabricated with a kelp-based electrolyte in this study. To the best of our knowledge, pure kelp is utilized as a semi-solid electrolyte for flexible Zn-MnO2 alkaline batteries for the first time, with which the as-assembled battery exhibited a specific capacity of 60 mA·h and could discharge for 120 h. Furthermore, the as-assembled Zn-MnO2 battery can be bent into a ring-shape and power a light-emitting diode screen, showing promising potential for the practical application in the future flexible, portable and biodegradable electronic devices.展开更多
Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of catho...Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of cathodes. Herein, we fabricated amorphous manganese dioxide by an in situ deposition method. The amorphous manganese dioxide can directly serve as the cathode of an aqueous zinc-ion battery without a binder. The resultant cathode exhibits a high specific capacity of 133.9 mAh/g at 200 mA/g and a capacity retention of 82% over 50 cycles at 1 A/g.展开更多
Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li ...Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li were leached under optimal experimental conditions:acid concentration of 82 wt.%,acid-to-slag mass ratio of 1.5:1,roasting temperature of 800°C,and roasting time of 2 h.During the roasting process,the manganese-rich slag first reacted with concentrated sulfuric acid,producing MnSO_(4),MnSO_(4)·H_(2)O,Li_(2)Mg(SO_(4))_(2),Al_(2)(SO_(4))_(3),and H_(4)SiO_(4).With the roasting temperature increasing,H_(4)SiO_(4) and Al_(2)(SO_(4))_(3) decomposed successively,resulting in generation of mullite and spinel.The mullite formation aided in decreasing the leaching efficiencies of Al and Si,while increasing the Li leaching efficiency.The formation of spinel,however,decreased the leaching efficiencies of Mn and Li.展开更多
Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical s...Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields.展开更多
Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/LH2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were d...Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/LH2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrographs measurements. Current density has important effects on cell voltage, anodic current efficiency and particle size of the grainy electrolytic manganese dioxide, and the optimum current density is 30 A/dm2. The grainy electrolytic manganese dioxide electrodeposited under the optimum conditions consists of γ-MnO2 with an orthorhombic lattice structure; the grainy electrolytic manganese dioxide has a spherical or sphere-like appearance and a narrow particle size distribution with an average particle diameter of 7.237 μm.展开更多
The effects of temperature and the concentration of sulfuric acid on the cell voltage, the anode current efficiency of electrodeposition and the particle size of grainy electrolytic manganese dioxide (EMD) were inve...The effects of temperature and the concentration of sulfuric acid on the cell voltage, the anode current efficiency of electrodeposition and the particle size of grainy electrolytic manganese dioxide (EMD) were investigated. The structure, particle size and appearance of grainy EMD were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrograph measurements. As the concentration of sulfuric acid increases, both the cell voltage and the average anode current efficiency decrease. With the increase of electrolysis temperature in the range of 30-60℃, the cell voltage, average anode current efficiency and particle size decrease. The optimum temperature of 30℃ and concentration of sulfuric acid of 2.5 mol/L for electrodeposition of the grainy EMD were obtained. XRD patterns show that the grainy EMD electrodeposited under the optimum conditions consists of γ-MnO2 and has an orthorhombic lattice structure. According to the results of SEM, the grainy EMD has a spherical or sphere-like appearance and a narrow particle size distribution with an average size of about 7μm. The grainy EMD is a promising cathode of rechargeable alkaline batteries for high energy density and a prospective precursor for production of the LiMn2O4 cathode of lithium ion batteries.展开更多
Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction result...Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.展开更多
Lithium manganese oxides(Li Mn2 O4, LMO) have attracted significant attention as important cathode materials for lithium-ion batteries(LIBs), which require fast charging based on their intrinsic electrochemical proper...Lithium manganese oxides(Li Mn2 O4, LMO) have attracted significant attention as important cathode materials for lithium-ion batteries(LIBs), which require fast charging based on their intrinsic electrochemical properties. However, these properties are limited by the rapid fading of cycling retention, particularly at high temperatures, because of the severe Mn corrosion triggered by the chemical reaction with fluoride(F-) species existing in the cell. To alleviate this issue, three types of silyl ether(Si–O)-functionalized task-specific additives are proposed, namely methoxytrimethylsilane, dimethoxydimethylsilane, and trimethoxymethylsilane. Ex-situ NMR analyses demonstrated that the Si-additives selectively scavenged the F-species as Si forms new chemical bonds with F via a nucleophilic substitution reaction due to the high binding affinity of Si with F-, thereby leading to a decrease in the F concentration in the cell. Furthermore, the addition of Si-additives in the electrolyte did not significantly affect the ionic conductivity or electrochemical stability of the electrolyte, indicating that these additives are compatible with conventional electrolytes. In addition, the cells cycled with Si-additives exhibited improved cycling retention at room temperature and 45 °C. Among these candidates, a combination of MTSi and the LMO cathode was found to be the most suitable choice in terms of cycling retention(71.0%), whereas the cell cycled with the standard electrolyte suffered from the fading of cycling retention triggered by Mn dissolution(64.4%). Additional ex-situ analyses of the cycled electrodes using SEM, TEM, EIS, XPS, and ICP-MS demonstrated that the use of Si-additives not only improved the surface stability of the LMO cathode but also that of the graphite anode, as the Si-additives prevent Mn corrosion. This inhibits the formation of cracks on the surface of the LMO cathode, facilitating the formation of a stable solid electrolyte interphase layer on the surface of the graphite anode. Therefore, Si-additives modified by Si–O functional groups can be effectively used to increase the overall electrochemical performance of the LMO cathode material.展开更多
Multidoped spinel LiCo0.02La0.01Mn1.97O3.98Cl0.02 was synthesized by solid-state method. The structure and electrochemical performance were characterized by XRD, ESEM, particle size distribution analysis, specific sur...Multidoped spinel LiCo0.02La0.01Mn1.97O3.98Cl0.02 was synthesized by solid-state method. The structure and electrochemical performance were characterized by XRD, ESEM, particle size distribution analysis, specific surface area testing, galvanostatic cycling and electrochemical impedance spectroscopy. The XRD analysis shows that the sample exhibits pure spinel phase. The substitution of Co, La for Mn and Cl for O in the LiMn2O4 stabilizes the structural integrity of the spinel host, which in turn increases the electrochemical cycleability. The electrochemical experiments confirm that the capacity of the LiCo0.02La0.01Mn1.97O3.98Cl0.02 electrode maintains 90.6% of the initial capacity at 180th cycle.展开更多
Several series of LiRE x Mn 2-x O 4(RE=Ce, Nd) samples prepared at different contents and in different rare earth metals substitution were studied in order to further understand the dependence of the elec...Several series of LiRE x Mn 2-x O 4(RE=Ce, Nd) samples prepared at different contents and in different rare earth metals substitution were studied in order to further understand the dependence of the electrochemical performance on the doping rare earth metals. These cathodes were more tolerant to repeat lithium extraction and insertion than a standard LiMn 2O 4 spinel electrode in spite of a small reduction in the initial capacity. X ray photoelectron spectroscopy results show that the Mn 4+ contents for spinel LiMn 2O 4 directly affected the initial capacity and cyclability of LiMn 2O 4.展开更多
With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and t...With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and the electrochemical properties of the prepared anatase TiO2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and galvanostatic charge and discharge test. The result shows that the prepared anatase TiO2 has high discharge capacity and good cyclic stability. The maximum discharge capacity is 313 mAh.g^-1, and there is no significant capacity decay from the second cycle.展开更多
Dandelion-like TiO2 microspheres consisting of numerous rutile single-crystalline nanorods were synthesized for the first time by a hydrothermal method. Their crystal structure, morphology and electrochemical properti...Dandelion-like TiO2 microspheres consisting of numerous rutile single-crystalline nanorods were synthesized for the first time by a hydrothermal method. Their crystal structure, morphology and electrochemical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and galvanostatic charge and discharge tests. The results show that the synthesized TiO2 microspheres exhibit good rate and cycle performances as anode materials of lithium ion batteries. It can be found that the dandelion-like structure provides a larger specific surface area and the single-crystalline nanorod provides a stable structure and fast pathways for electron and lithium ion transport, which contribute to the rate and cycle performances of the battery.展开更多
Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, lead...Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, leading to fast capacity decay. Here we report core-shell structured 1,4-benzoquinone@titaniumdioxide (BQ@TiO2) composite as cathode for lithium batteries. The composite cathode can deliver a highdischarge capacity of 441.2 mA h/g at 50 mA/g and a high capacity retention of 80.7% after 100 cycles. Thegood cycling performance of BQ@TiO2 composite can be attributed to the suppressed dissolution of BQ,which results from the physical confinement effect of Ti02 shell and the strong interactions between BQand Ti02. Moreover, the combination of ex situ infrared spectra and density functional theory calculationsreveals that the active redox sites of BQ are carbonyl groups. This work provides an alternative way tomitigate the dissolution of small carbonyl compounds and thus enhance their cycling stability.展开更多
Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated....Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.展开更多
Based on synthesizing pure spinel type lithium manganese oxides,the derivations such as LiMn1.5Ti0.5-O4,LiMn1.5Fe0.5O4,LiMn1 .5Ni0.5O4 and LiMn1.5Zn0.5O4 were prepared using solid- step-sintering method. The structure...Based on synthesizing pure spinel type lithium manganese oxides,the derivations such as LiMn1.5Ti0.5-O4,LiMn1.5Fe0.5O4,LiMn1 .5Ni0.5O4 and LiMn1.5Zn0.5O4 were prepared using solid- step-sintering method. The structures were characterized by using XRD,SEM and laser granulometer. The electrochemical measurement results show that the elemen t of iron or nickel can raise the discharging plateau voltage of LiMn2O4,an d element titanium improves the electrochemistry property of LiMn2O4 little,while element zinc destroys the electrochemistry property of LiMn2O4. The i nfluence of elements of titanium,iron,nickel,or zinc on the structure of LiMn 2O4 pure phase was discussed from the viewpoint of structural chemistry.展开更多
基金Supported by the Graduate Freedom Exploration Project Fund of the Central South University(No.502211850).
文摘Graphene/manganese dioxide composites and grapheme/manganese dioxide/sulfur(G/MnO2/S) composite cathode were prepared by hydrothermal method and by vapor permeation, respectively. Their structure, morphology and specific surface area were characterized by X-ray diffraction, electron microanalysis and nitrogen adsorption analysis. The composites show morphology of nanosheets, high specific surface area and even distribution of sulfur. The sulfur accounts for 75% in the G/MnO2/S composite by thermogravimetric analysis. The electrochemical performance of G/S and G/MnO2/S cathode were investigated. The G/MnO2/S composite cathodes show excellent rate performance and cycle stability. At a 0.2C current density, initial discharge specific capacity is 1 061 m A·h·g^-1 and maintains 698 m A·h·g^-1 after 100 cycles;At a 1C current density, maximum discharge capacity reaches 816 m A·h·g^-1 and average capacity decreasing rate is only 0.073%/cycle after running over 400 cycles. Electrochemical mechanism of the composites cathodes was analyzed. The sulfur adsorption of Mn O2 inhibited the loss of active material sulfur, so, the electrochemical performance of the complex was improved.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIP)(2014R1A2A1A10050821)
文摘In this study, we report the cost-effective and simple synthesis of carbon-coated α-MnOnanoparticles(α-MnO@C) for use as cathodes of aqueous zinc-ion batteries(ZIBs) for the first time. α-MnO@C was prepared via a gel formation, using maleic acid(CHO) as the carbon source, followed by annealing at low temperature of 270 °C. A uniform carbon network among the α-MnOnanoparticles was observed by transmission electron microscopy. When tested in a zinc cell, the α-MnO@C exhibited a high initial discharge capacity of 272 m Ah/g under 66 m A/g current density compared to 213 m Ah/g, at the same current density, displayed by the pristine sample. Further, α-MnO@C demonstrated superior cycleability compared to the pristine samples. This study may pave the way for the utilizing carbon-coated MnOelectrodes for aqueous ZIB applications and thereby contribute to realizing high performance eco-friendly batteries.
基金supported by the National Natural Science Foundation of China(22279101,5210130199)the Natural Science Basic Research Plan in Shaanxi Province of China(2022JM-090)+2 种基金China Postdoctoral Science Foundation(2021 M693885)Science and Technology Planning Project of Beilin District(GX2111)and Young Talents Supporting Project of Xi'an Science Association(095920221359).
文摘Aqueous zinc-ion batteries(AZIBs)are regarded as promising electrochemical energy storage devices owing to its low cost,intrinsic safety,abundant zinc reserves,and ideal specific capacity.Compared with other cathode materials,manganese dioxide with high voltage,environmental protection,and high theoretical specific capacity receives considerable attention.However,the problems of structural instability,manganese dissolution,and poor electrical conductivity make the exploration of high-performance manganese dioxide still a great challenge and impede its practical applications.Besides,zinc storage mechanisms involved are complex and somewhat controversial.To address these issues,tremendous efforts,such as surface engineering,heteroatoms doping,defect engineering,electrolyte modification,and some advanced characterization technologies,have been devoted to improving its electrochemical performance and illustrating zinc storage mechanism.In this review,we particularly focus on the classification of manganese dioxide based on crystal structures,zinc ions storage mechanisms,the existing challenges,and corresponding optimization strategies as well as structure-performance relationship.In the final section,the application perspectives of manganese oxide cathode materials in AZIBs are prospected.
基金Supported by the National Natural Science Foundation of China(No.20873046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200805740004)+1 种基金the Natural Science Foundation of Guangdong Province,China(No.10351063101000001)the Fund of Guangdong Province Cooperation of Producing, Studying and Researching,China (No.2011B090400317)
文摘The authors reported a facile method for the synthesis of manganese dioxide without any template and catalyst at a low-temperature. The prepared sample was characterized with X-ray diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller(BET) surface analysis, Fourier transform infrared(FTIR) spectrometry, cyclic voltammetry, alternative current(AC) impedance test and battery discharge test. It is found that the prepared sample belongs to α-MnO2 and has a microsphere morphology and a large BET surface area. The electrochemical characterization indicates that the prepared sample displays a larger electrochemical capacitance than the commercial electrolytic manganese dioxides(EMD) in Na2SO4 solution, and exhibits larger discharge capacity than EMD, especially at a high rate discharge condition when it is used as cathode of alkaline Zn/MnO2 battery.
文摘Flexible energy-storage devices play a critical role in the development of portable, flexible and wearable electronics. In addition, biological materials including plants or plant-based materials are known for their safety, biodegradability, biocompatibility, environmental benignancy, and low cost. With respect to these advances, a flexible alkaline zinc-manganese dioxide (Zn-MnO2) battery is fabricated with a kelp-based electrolyte in this study. To the best of our knowledge, pure kelp is utilized as a semi-solid electrolyte for flexible Zn-MnO2 alkaline batteries for the first time, with which the as-assembled battery exhibited a specific capacity of 60 mA·h and could discharge for 120 h. Furthermore, the as-assembled Zn-MnO2 battery can be bent into a ring-shape and power a light-emitting diode screen, showing promising potential for the practical application in the future flexible, portable and biodegradable electronic devices.
文摘Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of cathodes. Herein, we fabricated amorphous manganese dioxide by an in situ deposition method. The amorphous manganese dioxide can directly serve as the cathode of an aqueous zinc-ion battery without a binder. The resultant cathode exhibits a high specific capacity of 133.9 mAh/g at 200 mA/g and a capacity retention of 82% over 50 cycles at 1 A/g.
基金supported by the National Natural Science Foundation of China (No.51704038)the State-Owned Enterprise Electric Vehicle Industry Alliance,China (No.JS-211)the Changsha Science and Technology Project,China (No.kq1602212)。
文摘Mn and Li were selectively extracted from the manganese-rich slag by sulfation roasting−water leaching.The extraction mechanisms of Mn and Li were investigated by means of XRD,TG−DSC,and SEM−EDS.73.71%Mn and 73.28%Li were leached under optimal experimental conditions:acid concentration of 82 wt.%,acid-to-slag mass ratio of 1.5:1,roasting temperature of 800°C,and roasting time of 2 h.During the roasting process,the manganese-rich slag first reacted with concentrated sulfuric acid,producing MnSO_(4),MnSO_(4)·H_(2)O,Li_(2)Mg(SO_(4))_(2),Al_(2)(SO_(4))_(3),and H_(4)SiO_(4).With the roasting temperature increasing,H_(4)SiO_(4) and Al_(2)(SO_(4))_(3) decomposed successively,resulting in generation of mullite and spinel.The mullite formation aided in decreasing the leaching efficiencies of Al and Si,while increasing the Li leaching efficiency.The formation of spinel,however,decreased the leaching efficiencies of Mn and Li.
基金Project(JCYJ20170817110251498)supported by the Basic Research Project of the Science and Technology Innovation Commission of Shenzhen,ChinaProject(2016TQ03C919)supported by the Guangdong Special Support for the Science and Technology Leading Young Scientist,ChinaProject(21603094)supported by the National Natural Science Foundation of China
文摘Developing high-performance lithium ion batteries(LIBs)using manganese oxides as anodes is attractive due to their high theoretical capacity and abundant resources.Herein,we report a facile synthesis of hierarchical spherical MnO2 containing coherent amorphous/crystalline domained by a simple yet effective redox precipitation reaction at room temperature.Further,flower-like CoMn2O4 constructed by single-crystalline spinel nanosheets has been fabricated using MnO2 as precursor.This mild methodology avoids undesired particle aggregation and loss of active surface area in conventional hydrothermal or solid-state processes.Moreover,both MnO2 and CoMn2O4 nanosheets manifest superior lithium-ion storage properties,rendering them promising applications in LIBs and other energy-related fields.
文摘Grainy electrolytic manganese dioxide was prepared by electrodeposition in a 0.9 mol/L MnSO4 and 2.5 mol/LH2SO4 solution. The structure, particle size and appearance of the grainy electrolytic manganese dioxide were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrographs measurements. Current density has important effects on cell voltage, anodic current efficiency and particle size of the grainy electrolytic manganese dioxide, and the optimum current density is 30 A/dm2. The grainy electrolytic manganese dioxide electrodeposited under the optimum conditions consists of γ-MnO2 with an orthorhombic lattice structure; the grainy electrolytic manganese dioxide has a spherical or sphere-like appearance and a narrow particle size distribution with an average particle diameter of 7.237 μm.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50302016) and the PostdoctoralScience Foundation of Central South University.
文摘The effects of temperature and the concentration of sulfuric acid on the cell voltage, the anode current efficiency of electrodeposition and the particle size of grainy electrolytic manganese dioxide (EMD) were investigated. The structure, particle size and appearance of grainy EMD were determined by powder X-ray diffraction, laser particle size analysis and scanning electron micrograph measurements. As the concentration of sulfuric acid increases, both the cell voltage and the average anode current efficiency decrease. With the increase of electrolysis temperature in the range of 30-60℃, the cell voltage, average anode current efficiency and particle size decrease. The optimum temperature of 30℃ and concentration of sulfuric acid of 2.5 mol/L for electrodeposition of the grainy EMD were obtained. XRD patterns show that the grainy EMD electrodeposited under the optimum conditions consists of γ-MnO2 and has an orthorhombic lattice structure. According to the results of SEM, the grainy EMD has a spherical or sphere-like appearance and a narrow particle size distribution with an average size of about 7μm. The grainy EMD is a promising cathode of rechargeable alkaline batteries for high energy density and a prospective precursor for production of the LiMn2O4 cathode of lithium ion batteries.
基金financially supported by the National Key Research and Development Program of China(Grant No.2018YFB0104302)the National Natural Science Foundation of China(Grant No.51872026)。
文摘Recently,MnO2 has gained attention as an electrode material because of its very high theoretical capacity and abundant availability.However,the very high volumetric change caused by its conversion-type reaction results in bad reversibility of charge-discharge.In this study,δ-MnO2 of thickness 8 nm anchored on the surface of carbon nanotubes(CNT)by Mn-O-C chemical bonding is synthesized via a facile hydrothermal method.Numerous ex-situ characterizations of the lithium storage process were performed.Furthermore,density functional theory(DFT)calculations indicated thatδ-MnO2(012)thermodynamically prefers bonding with CNTs.Moreover,the interfacial interaction reinforces the connection of Mn-O and reduces the bond strength of Li-O in lithiated MnO2,which could facilitate an intercalation-type lithium storage reaction.Consequently,the as-synthesizedδ-MnO2 retains an excellent reversible capacity of 577.5 mAh g-1 in 1000 cycles at a high rate of 2 A g-1 between 0.1 V and 3.0 V.The results of this study demonstrate the possibility of employing the cost-effective transition metal oxides as intercalation lithium storage dominant electrodes for advanced rechargeable batteries.
基金supported by National Research Foundation of Korea grant from the Korean government (MSIP) (NRF2019R1C1C1002249, and NRF-2017M1A2A2044506)。
文摘Lithium manganese oxides(Li Mn2 O4, LMO) have attracted significant attention as important cathode materials for lithium-ion batteries(LIBs), which require fast charging based on their intrinsic electrochemical properties. However, these properties are limited by the rapid fading of cycling retention, particularly at high temperatures, because of the severe Mn corrosion triggered by the chemical reaction with fluoride(F-) species existing in the cell. To alleviate this issue, three types of silyl ether(Si–O)-functionalized task-specific additives are proposed, namely methoxytrimethylsilane, dimethoxydimethylsilane, and trimethoxymethylsilane. Ex-situ NMR analyses demonstrated that the Si-additives selectively scavenged the F-species as Si forms new chemical bonds with F via a nucleophilic substitution reaction due to the high binding affinity of Si with F-, thereby leading to a decrease in the F concentration in the cell. Furthermore, the addition of Si-additives in the electrolyte did not significantly affect the ionic conductivity or electrochemical stability of the electrolyte, indicating that these additives are compatible with conventional electrolytes. In addition, the cells cycled with Si-additives exhibited improved cycling retention at room temperature and 45 °C. Among these candidates, a combination of MTSi and the LMO cathode was found to be the most suitable choice in terms of cycling retention(71.0%), whereas the cell cycled with the standard electrolyte suffered from the fading of cycling retention triggered by Mn dissolution(64.4%). Additional ex-situ analyses of the cycled electrodes using SEM, TEM, EIS, XPS, and ICP-MS demonstrated that the use of Si-additives not only improved the surface stability of the LMO cathode but also that of the graphite anode, as the Si-additives prevent Mn corrosion. This inhibits the formation of cracks on the surface of the LMO cathode, facilitating the formation of a stable solid electrolyte interphase layer on the surface of the graphite anode. Therefore, Si-additives modified by Si–O functional groups can be effectively used to increase the overall electrochemical performance of the LMO cathode material.
基金Project(20273047) supported by the National Natural Science Foundation of China
文摘Multidoped spinel LiCo0.02La0.01Mn1.97O3.98Cl0.02 was synthesized by solid-state method. The structure and electrochemical performance were characterized by XRD, ESEM, particle size distribution analysis, specific surface area testing, galvanostatic cycling and electrochemical impedance spectroscopy. The XRD analysis shows that the sample exhibits pure spinel phase. The substitution of Co, La for Mn and Cl for O in the LiMn2O4 stabilizes the structural integrity of the spinel host, which in turn increases the electrochemical cycleability. The electrochemical experiments confirm that the capacity of the LiCo0.02La0.01Mn1.97O3.98Cl0.02 electrode maintains 90.6% of the initial capacity at 180th cycle.
基金financially supported by NSAF(No.U1530155)Ministry of Science and Technology(MOST)of China,US–China Collaboration on Cutting-edge Technology Development of Electric Vehicle,the Nation Key Basic Research Program of China(No.2015CB251100)Beijing Key Laboratory of Environmental Science and Engineering(No.20131039031)
文摘Several series of LiRE x Mn 2-x O 4(RE=Ce, Nd) samples prepared at different contents and in different rare earth metals substitution were studied in order to further understand the dependence of the electrochemical performance on the doping rare earth metals. These cathodes were more tolerant to repeat lithium extraction and insertion than a standard LiMn 2O 4 spinel electrode in spite of a small reduction in the initial capacity. X ray photoelectron spectroscopy results show that the Mn 4+ contents for spinel LiMn 2O 4 directly affected the initial capacity and cyclability of LiMn 2O 4.
基金supported by the National Natural Science Foundation of China(No.20873046)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.200805740004)the Project of Guangdong Province(No.2009B050700039)
文摘With the assistance of nonionic surfactant (OP-10) and surface-selective surfactant (CH3COOH), anatase TiO2 was prepared as an anode material for lithium ion batteries. The morphology, the crystal structure, and the electrochemical properties of the prepared anatase TiO2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and galvanostatic charge and discharge test. The result shows that the prepared anatase TiO2 has high discharge capacity and good cyclic stability. The maximum discharge capacity is 313 mAh.g^-1, and there is no significant capacity decay from the second cycle.
基金was financially supported by the Joint Project of the National Natural Science Foundation of Chinathe Natural Science Foundation of Guangdong Province,China(No.U1134002),the Natural Science Foundation of Guangdong Province,China(No.10351063101000001)the Key Project of Science and Technology in Guangdong Province,China(No.2010A090602003)
文摘Dandelion-like TiO2 microspheres consisting of numerous rutile single-crystalline nanorods were synthesized for the first time by a hydrothermal method. Their crystal structure, morphology and electrochemical properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and galvanostatic charge and discharge tests. The results show that the synthesized TiO2 microspheres exhibit good rate and cycle performances as anode materials of lithium ion batteries. It can be found that the dandelion-like structure provides a larger specific surface area and the single-crystalline nanorod provides a stable structure and fast pathways for electron and lithium ion transport, which contribute to the rate and cycle performances of the battery.
基金supported by the National Programs for NanoKey Project (2017YFA0206700)the National Natural Science Foundation of China (51231003)the Ministry of Education of China (B12015)
文摘Organic carbonyl compounds are considered as promising candidates for lithium batteries due to theirhigh capacity and environmental friendliness, However, they suffer from serious dissolution in the elec-trolyte, leading to fast capacity decay. Here we report core-shell structured 1,4-benzoquinone@titaniumdioxide (BQ@TiO2) composite as cathode for lithium batteries. The composite cathode can deliver a highdischarge capacity of 441.2 mA h/g at 50 mA/g and a high capacity retention of 80.7% after 100 cycles. Thegood cycling performance of BQ@TiO2 composite can be attributed to the suppressed dissolution of BQ,which results from the physical confinement effect of Ti02 shell and the strong interactions between BQand Ti02. Moreover, the combination of ex situ infrared spectra and density functional theory calculationsreveals that the active redox sites of BQ are carbonyl groups. This work provides an alternative way tomitigate the dissolution of small carbonyl compounds and thus enhance their cycling stability.
基金supported by the National Natural Science Foundation for Postdoctoral Scientists of China (Grant No. 20090451554)
文摘Nano-LiMn2O4 cathode materials with nano-sized particles are synthesized via a citric acid assisted sol-gel route. The structure, the morphology and the electrochemical properties of the nano-LiMn204 are investigated. Compared with the micro-sized LiMn2O4, the nano-LiMn2O4 possesses a high initial capacity (120 mAh/g) at a discharge rate of 0.2 C (29.6 mA/g). The nano-LiMn2O4 also has a good high-rate discharge capability, retaining 91% of its capacity at a discharge rate of 10 C and 73~ at a discharge rate of 40 C. In particular, the nano-LiMn2O4 shows an excellent high-rate pulse discharge capability. The cut-off voltage at the end of 50-ms pulse discharge with a discharge rate of 80 C is above 3.40 V, and the voltage returns to over 4.10 V after the pulse discharge. These results show that the prepared nano-LiMn2O4 could be a potential cathode material for the power sources with the capability to deliver very high-rate pulse currents.
文摘Based on synthesizing pure spinel type lithium manganese oxides,the derivations such as LiMn1.5Ti0.5-O4,LiMn1.5Fe0.5O4,LiMn1 .5Ni0.5O4 and LiMn1.5Zn0.5O4 were prepared using solid- step-sintering method. The structures were characterized by using XRD,SEM and laser granulometer. The electrochemical measurement results show that the elemen t of iron or nickel can raise the discharging plateau voltage of LiMn2O4,an d element titanium improves the electrochemistry property of LiMn2O4 little,while element zinc destroys the electrochemistry property of LiMn2O4. The i nfluence of elements of titanium,iron,nickel,or zinc on the structure of LiMn 2O4 pure phase was discussed from the viewpoint of structural chemistry.