期刊文献+
共找到89,610篇文章
< 1 2 250 >
每页显示 20 50 100
A review on anode materials for lithium/sodium-ion batteries 被引量:7
1
作者 Abhimanyu Kumar Prajapati Ashish Bhatnagar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期509-540,I0013,共33页
Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed... Since lithium-ion batteries(LIBs) have been substantially researched in recent years, they now possess exceptional energy and power densities, making them the most suited energy storage technology for use in developed and developing industries like stationary storage and electric cars, etc. Concerns about the cost and availability of lithium have prompted research into alternatives, such as sodium-ion batteries(SIBs), which use sodium instead of lithium as the charge carrier. This is especially relevant for stationary applications, where the size and weight of battery are less important. The working efficiency and capacity of these batteries are mainly dependent on the anode, cathode, and electrolyte. The anode,which is one of these components, is by far the most important part of the rechargeable battery.Because of its characteristics and its structure, the anode has a tremendous impact on the overall performance of the battery as a whole. Keeping the above in view, in this review we critically reviewed the different types of anodes and their performances studied to date in LIBs and SIBs. The review article is divided into three main sections, namely:(i) intercalation reaction-based anode materials;(ii) alloying reaction-based anode materials;and(iii) conversion reaction-based anode materials, which are further classified into a number of subsections based on the type of material used. In each main section, we have discussed the merits and challenges faced by their particular system. Afterward, a brief summary of the review has been discussed. Finally, the road ahead for better application of Li/Na-ion batteries is discussed, which seems to mainly depend on exploring the innovative materials as anode and on the inoperando characterization of the existing materials for making them more capable in terms of application in rechargeable batteries. 展开更多
关键词 lithium/sodium-ion batteries Anode materials Nanomaterials Metal-organic framework Conversion materials Intercalated materials Alloying materials
下载PDF
Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2 被引量:12
2
作者 Junda Huang Zengxi Wei +3 位作者 Jiaqin Liao Wei Ni Caiyun Wang Jianmin Ma 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第6期100-124,共25页
Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybde... Molybdenum and tungsten chalcogenides have attracted tremendous attention in energy storage and conversion due to their outstanding physicochemical and electrochemical properties.There are intensive studies on molybdenum and tungsten chalcogenides for energy storage and conversion,however,there is no systematic review on the applications of WS2,Mo Se2and WSe2as anode materials for lithium-ion batteries(LIBs)and sodium-ion batteries(SIBs),except Mo S2.Considering the importance of these contents,it is extremely necessary to overview the recent development of novel layered WS2,Mo Se2and WSe2beyond Mo S2in energy storage.Here,we will systematically overview the recent progress of WS2,Mo Se2and WSe2as anode materials in LIBs and SIBs.This review will also discuss the opportunities,and perspectives of these materials in the energy storage fields. 展开更多
关键词 MoSe2 WS2 WSe2 lithium-ION BATTERIES sodium-ion BATTERIES
下载PDF
DFT study of solvation of Li+/Na+ in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
3
作者 刘琦 谭国强 +2 位作者 吴锋 穆道斌 吴伯荣 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第3期519-528,共10页
Choosing suitable solvent is the key technology for the electrochemical performance of energy storage device.Among them,vinylene carbonate(VC),fluoroethylene carbonate(FEC),and ethylene sulfite(ES)are the potential or... Choosing suitable solvent is the key technology for the electrochemical performance of energy storage device.Among them,vinylene carbonate(VC),fluoroethylene carbonate(FEC),and ethylene sulfite(ES)are the potential organic electrolyte solvents for lithium/sodium battery.However,the quantitative relation and the specific mechanism of these solvents are currently unclear.In this work,density functional theory(DFT)method is employed to study the lithium/sodium ion solvation in solvents of VC,ES,and FEC.We first find that 4VC-Li+,4VC-Na+,4ES-Li+,4ES-Na+,4FEC-Li+,and 4FEC-Na+are the maximum thermodynamic stable solvation complexes.Besides,it is indicated that the innermost solvation shells are consisted of 5VC-Li+/Na+,5ES-Li+/Na+,and 5FEC-Li+/Na+.It is also indicated that the Li+solvation complexes are more stable than Na+complexes.Moreover,infrared and Raman spectrum analysis indicates that the stretching vibration of O=C peak evidently shifts to high frequency with the Li+/Na+concentration reducing in nVC-Li+/Na+and nFEC-Li+/Na+solvation complexes,and the O=C vibration peak frequency in Na+solvation complexes is higher than that of Li+complexes.The S=O stretching vibration in nES-Li+/Na+solvation complexes moves to high frequency with the decrease of the Li+/Na+concentration,the S=O vibration in nES-Na+is higher than that in nES-Li+.The study is meaningful for the design of new-type Li/Na battery electrolytes. 展开更多
关键词 elelctrolyte SOLVATION lithium ion battery sodium ion battery
下载PDF
Molecular Dynamics, Diffusion Coefficients and Activation Energy of the Electrolyte (Anode) in Lithium (Li and Li+), Sodium (Na and Na+) and Potassium (K and K+)
4
作者 Alain Second Dzabana Honguelet Timothée Nsongo +1 位作者 Bitho Rodongo Earvin Loumbandzila 《Modeling and Numerical Simulation of Material Science》 2024年第1期39-57,共19页
This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studi... This work is a simulation modelling with the LAMMPS calculation code of an electrode based on alkali metals (lithium, sodium and potassium) using the MEAM potential. For different multiplicities, two models were studied;with and without gap. In this work, we present the structural, physical and chemical properties of the lithium, sodium and potassium electrodes. For the structural properties, the cohesive energy and the mesh parameters were calculated, revealing that, whatever the chemical element selected, the compact hexagonal hcp structure is the most stable, followed by the face-centred cubic CFC structure, and finally the BCC structure. The most stable structure is lithium, with a cohesion energy of -6570 eV, and the lowest bcc-hcp transition energy of -0.553 eV/atom, followed by sodium. For physical properties, kinetic and potential energies were calculated for each of the sectioned chemical elements, with lithium achieving the highest value. Finally, for the chemical properties, we studied the diffusion coefficient and the activation energy. Only potassium followed an opposite order to the other two, with the quantities with lacunae being greater than those without lacunae, whatever the multiplicity. The order of magnitude of the diffusion coefficients is given by the relationship D<sub>Li</sub> > D<sub>Na</sub> > D<sub>k</sub> for the multiplicity 6*6*6, while for the activation energy the order is reversed. 展开更多
关键词 Molecular Dynamics Diffusion Coefficients Activation Energy lithium Alkali Metals MEAM Potential
下载PDF
Aqueous electrochemical delithiation of cathode materials as a strategy to selectively recover lithium from waste lithium-ion batteries
5
作者 Pier Giorgio Schiavi Andrea Giacomo Marrani +4 位作者 Olga Russina Ludovica D’Annibale Francesco Amato Francesca Pagnanelli Pietro Altimari 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期144-153,I0004,共11页
Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological... Lithium recovery from end-of-life Li-ion batteries(LIBs)through pyro-and hydrometallurgical recycling processes involves several refining stages,with high consumption of reagents and energy.A competitive technological alternative is the electrochemical oxidation of the cathode materials,whereby lithium can be deintercalated and transferred to an electrolyte solution without the aid of chemical extracting compounds.This article investigates the potential to selectively recover Li from LIB cathode materials by direct electrochemical extraction in aqueous solutions.The process allowed to recovering up to 98%of Li from high-purity commercial cathode materials(LiMn_(2)O_(4),LiCoO_(2),and Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2))with a faradaic efficiency of 98%and negligible co-extraction of Co,Ni,and Mn.The process was then applied to recover Li from the real waste LIBs black mass obtained by the physical treatment of electric vehicle battery packs.This black mass contained graphite,conductive carbon,and metal impurities from current collectors and steel cases,which significantly influenced the evolution and performances of Li electrochemical extraction.Particularly,due to concomitant oxidation of impurities,lithium extraction yields and faradaic efficiencies were lower than those obtained with high-purity cathode materials.Copper oxidation was found to occur within the voltage range investigated,but it could not quantitatively explain the reduced Li extraction performances.In fact,a detailed investigation revealed that above 1.3 V vs.Ag/Ag Cl,conductive carbon can be oxidized,contributing to the decreased Li extraction.Based on the reported experimental results,guidelines were provided that quantitatively enable the extraction of Li from the black mass,while preventing the simultaneous oxidation of impurities and,consequently,reducing the energy consumption of the proposed Li recovery method. 展开更多
关键词 lithium recovery lithium-ion batteries recycling Electrochemical lithium extraction lithium selective EXTRACTION
下载PDF
From Liquid to Solid‑State Lithium Metal Batteries:Fundamental Issues and Recent Developments
6
作者 Zhao Zhang Wei‑Qiang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期68-125,共58页
The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal ba... The widespread adoption of lithium-ion batteries has been driven by the proliferation of portable electronic devices and electric vehicles,which have increasingly stringent energy density requirements.Lithium metal batteries(LMBs),with their ultralow reduction potential and high theoretical capacity,are widely regarded as the most promising technical pathway for achieving high energy density batteries.In this review,we provide a comprehensive overview of fundamental issues related to high reactivity and migrated interfaces in LMBs.Furthermore,we propose improved strategies involving interface engineering,3D current collector design,electrolyte optimization,separator modification,application of alloyed anodes,and external field regulation to address these challenges.The utilization of solid-state electrolytes can significantly enhance the safety of LMBs and represents the only viable approach for advancing them.This review also encompasses the variation in fundamental issues and design strategies for the transition from liquid to solid electrolytes.Particularly noteworthy is that the introduction of SSEs will exacerbate differences in electrochemical and mechanical properties at the interface,leading to increased interface inhomogeneity—a critical factor contributing to failure in all-solidstate lithium metal batteries.Based on recent research works,this perspective highlights the current status of research on developing high-performance LMBs. 展开更多
关键词 lithium metal batteries All-solid-state lithium metal battery Li dendrite Solid electrolyte Interface
下载PDF
Enabling an Inorganic-Rich Interface via Cationic Surfactant for High-Performance Lithium Metal Batteries
7
作者 Zejun Sun Jinlin Yang +18 位作者 Hongfei Xu Chonglai Jiang Yuxiang Niu Xu Lian Yuan Liu Ruiqi Su Dayu Liu Yu Long Meng Wang Jingyu Mao Haotian Yang Baihua Cui Yukun Xiao Ganwen Chen Qi Zhang Zhenxiang Xing Jisheng Pan Gang Wu Wei Chen 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期1-17,共17页
An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium brom... An anion-rich electric double layer(EDL)region is favorable for fabricating an inorganic-rich solid-electrolyte interphase(SEI)towards stable lithium metal anode in ester electrolyte.Herein,cetyltrimethylammonium bromide(CTAB),a cationic surfactant,is adopted to draw more anions into EDL by ionic interactions that shield the repelling force on anions during lithium plating.In situ electrochemical surface-enhanced Raman spectroscopy results combined with molecular dynamics simulations validate the enrichment of NO_(3)^(−)/FSI−anions in the EDL region due to the positively charged CTA^(+).In-depth analysis of SEI structure by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry results confirmed the formation of the inorganic-rich SEI,which helps improve the kinetics of Li^(+)transfer,lower the charge transfer activation energy,and homogenize Li deposition.As a result,the Li||Li symmetric cell in the designed electrolyte displays a prolongated cycling time from 500 to 1300 h compared to that in the blank electrolyte at 0.5 mA cm^(-2) with a capacity of 1 mAh cm^(-2).Moreover,Li||LiFePO_(4) and Li||LiCoO_(2) with a high cathode mass loading of>10 mg cm^(-2) can be stably cycled over 180 cycles. 展开更多
关键词 Cationic surfactant lithium nitrate additive Solid-electrolyte interphase Electric double layer lithium metal batteries
下载PDF
Call for knowledge systematization:An example from lithium ion batteries recycling
8
作者 Yun Zhao Baohua Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期169-170,共2页
Scientific research is one of the primary ways to drive human civilization forward.Countless research institutions and researchers worldwide are dedicated to exploring the unknown,resulting in a flood of research find... Scientific research is one of the primary ways to drive human civilization forward.Countless research institutions and researchers worldwide are dedicated to exploring the unknown,resulting in a flood of research findings[1].For instance,Web of Science alone collects over 10,000 academic papers on a daily basis.While each research field typically has around 10%of review articles,these mainly focus on a limited portion of the subject,failing to provide a comprehensive and real-time updated overview.As a result,researchers or students in a particular field may spend several months,or even longer,comprehending the state of research that has developed over just a few years.The lack of systematic background often leads to redundant or similar studies,which is highly detrimental to the progress of science and technology. 展开更多
关键词 lithium typically SPEND
下载PDF
Ferroelectric Ceramic Materials Enable High-Performance Organic-Inorganic Composite Electrolytes in Solid-State Lithium Metal Batteries
9
作者 马静媛 黄昱力 +5 位作者 周晗洁 王媛媛 李建刚 禹习谦 李泓 李妍 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期176-180,共5页
Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion co... Compared to commercial lithium-ion batteries, all-solid-state batteries can greatly increase the energy density, safety, and cycle life of batteries. The development of solid-state electrolyte with high lithium-ion conductivity and wide electrochemical window is the key for all-solid-state batteries. In this work, we report on the achievement of high ionic conductivity in the PAN/LiClO_(4)/BaTiO_(3) composite solid electrolyte (CSE) prepared by solution casting method. Our experimental results show that the PAN-based composite polymer electrolyte with 5 wt% BaTiO_(3) possesses a high room-temperature lithium-ion conductivity (9.85 × 10^(−4) S⋅cm^(−1)), high lithium-ion transfer number (0.63), wide electrochemical window (4.9 V vs Li+/Li). The Li|Li symmetric battery assembled with 5 wt% BaTiO_(3) can be stably circulated for 800 h at 0.1 mA⋅cm^(−2), and the LiFePO_(4)|CSE|Li battery maintains a capacity retention of 86.2% after 50 cycles at a rate of 0.3 C. The influence of BaTiO_(3) ceramic powder on the properties of PAN-based polymer electrolytes is analyzed. Our results provide a new avenue for future research in the all-solid-state lithium battery technology. 展开更多
关键词 battery lithium ELECTROLYTE
下载PDF
Effects of conductive agent type on lithium extraction from salt lake brine with LiFePO_(4) electrodes
10
作者 Zhen Zhang Pan Luo +7 位作者 Yan Zhang Yuhan Wang Li Liao Bo Yu Mingshan Wang Junchen Chen Bingshu Guo Xing Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期678-687,共10页
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi... Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes. 展开更多
关键词 salt lake brine lithium extraction electrochemical lithium extraction conductive agent extraction efficiency adsorption capacity
下载PDF
Sodium Sulfite as a Novel Hypoxia Revulsant Involved in Hypoxic Regulation in Escherichia coli
11
作者 YE Qiao HUO Jia Nan +4 位作者 LUO Yuan MEI Zhu Song FANG Long Mei GUO Bing Qian WANG Guang Yun 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第2期228-232,共5页
As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibitio... As a reducing salt,sodium sulfite could deprive oxygen in solution,which could mimic hypoxic stress in Caenorhabditis elegans.In this study,the wildtype Escherichia coli strain MG1655 was used to examine the inhibition of sodium sulfite-induced hypoxia by observing the bacterial growth curves. 展开更多
关键词 HYPOXIC sodium observing
下载PDF
A comparative study for petroleum removal capacities of the bacterial consortia entrapped in sodium alginate,sodium alginate/poly(vinyl alcohol),and bushnell haas agar
12
作者 Sezen Bilen Ozyurek 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期705-715,共11页
The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different pol... The purpose of this study was to identify and compare the degradation efficiencies of free and entrapped bacterial consortia(Staphylococcus capitis CP053957.1 and Achromobacter marplatensis MT078618.1)to different polymers such as Sodium Alginate(SA),Sodium Alginate/Poly(Vinyl Alcohol)(SA/PVA),and Bushnell Haas Agar(BHA).In addition to SA and SA/PVA,which are cost-effective,non-toxic and have different functional groups,BHA,which is frequently encountered in laboratory-scale studies but has not been used as an entrapment material until now.Based on these,the polymers with different surface morphologies and chemical compositions were analyzed by SEM and FT-IR.While the petroleum removal efficiency was higher with the entrapped bacterial consortia than with the free one,BHA-entrapped bacterial consortium enhanced the petroleum removal more than SA and SA/PVA.Accordingly,the degradation rate of bacterial consortia entrapped with BHA was 2.039 day^(-1),SA/PVA was 1.560,SA was 0.993,the half-life period of BHA-entrapped bacterial consortia is quite low(t_(1/2)=0.339)compared with SA(t_(1/2)=0.444)and SA/PVA(t_(1/2)=0.697).The effects of the four main factors such as:amount of BHA(0.5,1,1.5,2,2.5,3 g),disc size(4,5,6,7,8 mm),inoculum concentration(1,2.5,5,7.5,10 mL),and incubation period on petroleum removal were also investigated.The maximum petroleum removal(94.5%)was obtained at≥2.5 mL of bacterial consortium entrapped in 2 g BHA with a 7 mm disc size at 168 h and the results were also confirmed by statistical analysis.Although a decrease was observed during the reuse of bacterial consortium entrapped in BHA,the petroleum removal was still above 50%at 10th cycle.Based on GC-MS analysis,the removal capacity of BHA-entrapped consortium was over 90%for short-chain n-alkanes and 80%for medium-chain n-alkanes.Overall,the obtained data are expected to provide a potential guideline in cleaning up the large-scale oil pollution in the future.Since there has been no similar study investigating petroleum removal with the bacterial consortia entrapped with BHA,this novel entrapment material can potentially be used in the treatment of petroleum pollution in advanced remediation studies. 展开更多
关键词 Entrapment of bacterial consortia PETROLEUM RemovalBushnell Haas agar sodium alginate sodium alginate/poly(vinyl alcohol)
下载PDF
Comprehension-driven design of advanced multi-block single-ion conducting polymer electrolytes for high-performance lithium-metal batteries
13
作者 Xu Dong Dominic Bresser 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期357-359,共3页
The continuously growing importance of batteries for powering(hybrid)electric vehicles and storing renewable energy has prompted a renewed focus on lithium-metal batteries(LMBs)in recent years,as its high theoretical ... The continuously growing importance of batteries for powering(hybrid)electric vehicles and storing renewable energy has prompted a renewed focus on lithium-metal batteries(LMBs)in recent years,as its high theoretical specific capacity of about 3860 mA h g^(-1) and very low redox potential(-3.04 V vs.the standard hydrogen electrode)promise substantially higher energy densities compared to current lithium-ion batteries(LIBs)[1].However,lithium metal electrodes face severe challenges associated with the risk of dendritic lithium deposition and the high reactivity with traditional organic liquid electrolytes,resulting in a continuous loss of electrochemically active lithium and a relatively low Coulombic efficiency[2].To address these challenges,solid inorganic and polymer electrolytes have emerged as a potentially saferalternative. 展开更多
关键词 lithium polymer PROMPT
下载PDF
Reversed-Phase-HPLC Assay Method for Simultaneous Estimation of Sorbitol, Sodium Lactate, and Sodium Chlorides in Pharmaceutical Formulations and Drug Solution for Infusion
14
作者 Sreenivas Pippalla Venugopal Komreddy +2 位作者 Srinivasulu Kasa Vaishnavi Chintala Poluri Venkata Reddy 《American Journal of Analytical Chemistry》 CAS 2024年第2期57-71,共15页
A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chloride... A rapid, straightforward, sensitive, efficient, and cost-effective reverse-phase high-performance liquid chromatographic method was employed for the simultaneous determination of Sorbitol, Sodium Lactate, and Chlorides in a drug solution for infusion. Sorbitol, Sodium lactate, and Chloride are all officially recognized in the USP monograph. Assay methods are provided through various techniques, with titrations being ineffective for trace-level quantification. Alternatively, IC, AAS, and ICP-MS, though highly accurate, are costly and often unavailable to most testing facilities. When considering methods, it’s important to prioritize both quality control requirements and user-friendly techniques. A simple HPLC simultaneous method was developed for the quantification of Chlorides, Sorbitol, and Sodium Lactate with a shorter run time. The separation utilized a Shimpack SCR-102(H) ion exclusion analytical column (7.9 mm × 300 mm, 7 μm), with a flow rate of 0.6 mL per min. The column compartment temperature was maintained at 40°C, and the injection volume was set at 10 μL, with detection at 200 nm. All measurements were conducted in a 0.1% solution of phosphoric acid. The analytical curves demonstrated linearity (r > 0.9999) in the concentration range of 0.79 to 3.8 mg per mL for Sodium Lactate (SL), 0.16 to 0.79 mg per mL for Sodium Chloride (SC), and 1.5 to 7.2 mg per mL for Sorbitol. Validation of the developed method followed the guidelines of the International Conference on Harmonization (ICH Q2B) and USP. The method exhibited precision, robustness, accuracy, and selectivity. In accelerated stability testing over 6 months, no significant variations were observed in organoleptic analysis and pH. Consequently, the developed method is deemed suitable for routine quality control analyses, enabling the simultaneous determination of Sodium Lactate, Sodium Chloride, and Sorbitol in pharmaceutical formulations and infusions. 展开更多
关键词 SORBITOL sodium Lactate and Chloride ASSAY Analytical Validation HPLC
下载PDF
Perception of fundamental science to boost lithium metal anodes toward practical application
15
作者 Jinkun Wang Li Wang +2 位作者 Hong Xu Li Sheng Xiangming He 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期454-472,共19页
As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electr... As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electrodes.Although lithium anodes are regarded as the holy grail of lithium batteries,decades of exploration have not led to the successful commercialization of LMBs,due mainly to the challenges related to the inherent properties of lithium metal.To pave the way for further investigation,herein,a comprehensive review focusing on the fundamental science of lithium are provided.Firstly,the natures of lithium atoms and their isotopes,lithium clusters and lithium crystals are revisited,especially their structural and energetic properties.Subsequently,the electrochemical properties of lithium metal are reviewed.Numerous important concepts and scientific questions,including the electronic structure of lithium,influence of high pressure and low temperature on the properties of lithium,factors influencing lithium deposition,generation of lithium dendrites,and electrode potential of lithium in different electrolytes,are explained and analyzed in detail.Approaches to improve the performance of lithium anodes and thoughtfulness about the electrode potential in lithium battery research are proposed. 展开更多
关键词 lithium CLUSTER Crystal Physicochemical property Fundamental science
下载PDF
Pyrometallurgical recycling of end-of-life lithium-ion batteries
16
作者 Juheon Lee Kwang Won Park +1 位作者 Il Sohn Sanghoon Lee 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1554-1571,共18页
The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant c... The global importance of lithium-ion batteries(LIBs)has been increasingly underscored with the advancement of high-performance energy storage technologies.However,the end-of-life of these batteries poses significant challenges from environmental,economic,and resource management perspectives.This review paper focuses on the pyrometallurgy-based recycling process of lithium-ion batteries,exploring the fundamental understanding of this process and the importance of its optimization.Centering on the high energy consumption and emission gas issues of the pyrometallurgical recycling process,we systematically analyzed the capital-intensive nature of this process and the resulting technological characteristics.Furthermore,we conducted an in-depth discussion on the future research directions to overcome the existing technological barriers and limitations.This review will provide valuable insights for researchers and industry stakeholders in the battery recycling field. 展开更多
关键词 spent lithium-ion batteries RECYCLING SUSTAINABILITY lithium valuable metal
下载PDF
Inherent thermal-responsive strategies for safe lithium batteries
17
作者 Jia-Xin Guo Chang Gao +9 位作者 He Liu Feng Jiang Zaichun Liu Tao Wang Yuan Ma Yiren Zhong Jiarui He Zhi Zhu Yuping Wu Xin-Bing Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期519-534,I0012,共17页
Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and ele... Safe batteries are the basis for next-generation application scenarios such as portable energy storage devices and electric vehicles,which are crucial to achieving carbon neutralization.Electrolytes,separators,and electrodes as main components of lithium batteries strongly affect the occurrence of safety accidents.Responsive materials,which can respond to external stimuli or environmental change,have triggered extensive attentions recently,holding great promise in facilitating safe and smart batteries.This review thoroughly discusses recent advances regarding the construction of high-safety lithium batteries based on internal thermal-responsive strategies,together with the corresponding changes in electrochemical performance under external stimulus.Furthermore,the existing challenges and outlook for the design of safe batteries are presented,creating valuable insights and proposing directions for the practical implementation of safe lithium batteries. 展开更多
关键词 lithium battery Thermal safety Thermal runaway Thermal-responsive
下载PDF
Analytical solution to incident angle quasi-phase-matching engineering for second harmonic generation in a periodic-poled lithium niobate crystal
18
作者 洪丽红 邱雅婷 +2 位作者 李晓霓 陈宝琴 李志远 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期115-123,共9页
Phase matching or quasi-phase matching(QPM)is of significant importance to the conversion efficiency of second harmonic generation(SHG)in artificial nonlinear crystals like lithium niobate(LN)crystal or microstructure... Phase matching or quasi-phase matching(QPM)is of significant importance to the conversion efficiency of second harmonic generation(SHG)in artificial nonlinear crystals like lithium niobate(LN)crystal or microstructured nonlinear crystals like periodic-poled lithium niobate(PPLN)crystals.In this paper,we propose and show that the incident angle of pump laser light can be harnessed as an alternative versatile tool to engineer QPM for high-efficiency SHG in a PPLN crystal,in addition to conventional means of period adjusting or temperature tuning.A rigorous model is established and analytical solution of the nonlinear conversion efficiency under the small and large signal approximation theory is obtained at different incident angles.The variation of phase mismatching and walk-off length with incident angle or incident wavelength are also explored.Numerical simulations for a PPLN crystal with first order QPM structure are used to confirm our theoretical predictions based on the exact analytical solution of the general large-signal theory.The results show that the narrow-band tunable SHG output covers a range of 532 nm–552.8 nm at the ideal incident angle from 0°to 90°.This theoretical scheme,fully considering the reflection and transmission at the air-crystal interface,would offer an efficient theoretical system to evaluate the nonlinear frequency conversion and help to obtain the maximum SHG conversion efficiency by selecting an optimum incident wavelength and incident angle in a specially designed PPLN crystal,which would be very helpful for the design of tunable narrow-band pulse nanosecond,picosecond,and femtosecond laser devices via PPLN and other microstructured LN crystals. 展开更多
关键词 nonlinear frequency conversion TRANSMISSION REFLECTION lithium niobate
下载PDF
Review on current development of polybenzimidazole membrane for lithium battery
19
作者 Yonggui Deng Arshad Hussain +3 位作者 Waseem Raza Xingke Cai Dongqing Liu Jun Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期579-608,共30页
With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the k... With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology. 展开更多
关键词 lithium batteries SEPARATORS Porous separators Polybenzimidazole Membrane
下载PDF
Coated sodium butyrate ameliorates high‑energy and low‑protein diet induced hepatic dysfunction via modulating mitochondrial dynamics, autophagy and apoptosis in laying hens
20
作者 Sasa Miao Tianming Mu +5 位作者 Ru Li Yan Li Wenyan Zhao Jiankui Li Xinyang Dong Xiaoting Zou 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第3期1190-1206,共17页
Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in... Background Fatty liver hemorrhagic syndrome(FLHS),a fatty liver disease in laying hens,poses a grave threat to the layer industry,stemming from its ability to trigger an alarming plummet in egg production and usher in acute mortality among laying hens.Increasing evidence suggests that the onset and progression of fatty liver was closely related to mitochondria dysfunction.Sodium butyrate was demonstrated to modulate hepatic lipid metabolism,alle-viate oxidative stress and improve mitochondrial dysfunction in vitro and mice models.Nevertheless,there is limited existing research on coated sodium butyrate(CSB)to prevent FLHS in laying hens,and whether and how CSB exerts the anti-FLHS effect still needs to be explored.In this experiment,the FLHS model was induced by administering a high-energy low-protein(HELP)diet in laying hens.The objective was to investigate the effects of CSB on alleviating FLHS with a focus on the role of CSB in modulating mitochondrial function.Methods A total of 288 healthy 28-week-old Huafeng laying hens were arbitrarily allocated into 4 groups with 6 replicates each,namely,the CON group(normal diet),HELP group(HELP diet),CH500 group(500 mg/kg CSB added to HELP diet)and CH750 group(750 mg/kg CSB added to HELP diet).The duration of the trial encompassed a period of 10 weeks.Results The result revealed that CSB ameliorated the HELP-induced FLHS by improving hepatic steatosis and patho-logical damage,reducing the gene levels of fatty acid synthesis,and promoting the mRNA levels of key enzymes of fatty acid catabolism.CSB reduced oxidative stress induced by the HELP diet,upregulated the activity of GSH-Px and SOD,and decreased the content of MDA and ROS.CSB also mitigated the HELP diet-induced inflammatory response by blocking TNF-α,IL-1β,and F4/80.In addition,dietary CSB supplementation attenuated HELP-induced activation of the mitochondrial unfolded protein response(UPRmt),mitochondrial damage,and decline of ATPase activity.HELP diet decreased the autophagosome formation,and downregulated LC3B but upregulated p62 protein expression,which CSB administration reversed.CSB reduced HELP-induced apoptosis,as indicated by decreases in the Bax/Bcl-2,Caspase-9,Caspase-3,and Cyt C expression levels.Conclusions Dietary CSB could ameliorate HELP diet-induced hepatic dysfunction via modulating mitochondrial dynamics,autophagy,and apoptosis in laying hens.Consequently,CSB,as a feed additive,exhibited the capacity to prevent FLHS by modulating autophagy and lipid metabolism. 展开更多
关键词 AUTOPHAGY Coated sodium butyrate Laying hens Lipid metabolism MITOCHONDRIA
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部