期刊文献+
共找到3,559篇文章
< 1 2 178 >
每页显示 20 50 100
Solvent-Free Manufacturing of Lithium-Ion Battery Electrodes via Cold Plasma
1
作者 Zhiming Liang Tianyi Li +9 位作者 Holden Chi Joseph Ziegelbauer Kai Sun Ming Wang Wei Zhang Tuo Liu Yang-Tse Cheng Zonghai Chen Xiaohong Gayden Chunmei Ban 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期28-33,共6页
Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents... Slurry casting has been used to fabricate lithium-ion battery electrodes for decades,which involves toxic and expensive organic solvents followed by high-cost vacuum drying and electrode calendering.This work presents a new manufacturing method using a nonthermal plasma to create inter-particle binding without using any polymeric binding materials,enabling solvent-free manufacturing electrodes with any electrochemistry of choice.The cold-plasma-coating technique enables fabricating electrodes with thickness(>200 pm),high mass loading(>30 mg cm^(-2)),high peel strength,and the ability to print lithium-ion batteries in an arbitrary geometry.This crosscutting,chemistry agnostic,platform technology would increase energy density,eliminate the use of solvents,vacuum drying,and calendering processes during production,and reduce manufacturing cost for current and future cell designs.Here,lithium iron phosphate and lithium cobalt oxide were used as examples to demonstrate the efficacy of the cold-plasma-coating technique.It is found that the mechanical peel strength of cold-plasma-coating-manufactured lithium iron phosphate is over an order of magnitude higher than that of slurry-casted lithium iron phosphate electrodes.Full cells assembled with a graphite anode and the cold-plasma-coating-lithium iron phosphate cathode offer highly reversible cycling performance with a capacity retention of 81.6%over 500 cycles.For the highly conductive cathode material lithium cobalt oxide,an areal capacity of 4.2 mAh cm^(-2)at 0.2 C is attained.We anticipate that this new,highly scalable manufacturing technique will redefine global lithium-ion battery manufacturing providing significantly reduced plant footprints and material costs. 展开更多
关键词 cold plasma deposition lithium-ion battery solvent-free manufacturing
下载PDF
In-situ design and construction of lithium-ion battery electrodes on metal substrates with enhanced performances:A brief review 被引量:2
2
作者 Weixin Zhang Yingmeng Zhang +3 位作者 Zeheng Yang Gongde Chen Guo Ma Qiang Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2016年第1期48-52,共5页
For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode mat... For the ever-growing demand of advanced lithium-ion batteries, it is highly desirable to grow self-supported micro-/nanostructured arrays on metal substrates as electrodes directly. The in-situ growth of electrode materials on the conducting substrates greatly simplifies the electrode fabrication process without using any binders or conductive additives. Moreover, the well-ordered arrays closely connected to the current collectors can provide direct electron transport pathways and enhanced accommodation of strains arisen from lithium ion lithiation/delithiation. This article summarizes our recent work on design and construction of lithium-ion battery electrodes on metal substrates. An aqueous solution-based process and a microemulsion-mediated process have been respectively presented to control the kinetic and thermodynamic processes for the micro-/nanostructured array growth on metal substrates, with particular attention to CuO nanorod arrays and microcog arrays successfully prepared on Cu foil substrates. They can be directly used as binder-free electrodes to build advanced lithium-ion batteries with high energy, high safety and high stability. 展开更多
关键词 Micro-/nanostructured arrays Metal substrates lithium-ion batteries Full cells electrodes
下载PDF
Analysis of diffusion induced elastoplastic bending of bilayer lithium-ion battery electrodes
3
作者 Dawei LI Zongzan LI +1 位作者 Yicheng SONG Junqian ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第5期659-670,共12页
Bilayer electrode, composed of a current collector layer and an active material layer, has great potential in applications of in-situ electrochemical experiments due to the bending upon lithiation. This paper establis... Bilayer electrode, composed of a current collector layer and an active material layer, has great potential in applications of in-situ electrochemical experiments due to the bending upon lithiation. This paper establishes an elastoplastic theory for the lithiation induced deformation of bilayer electrode with consideration of the plastic yield of current collector. It is found that the plastic yield of current collector reduces the restriction of current collector to an active layer, and therefore, enhances in-plane stretching while lowers down the rate of electrode bending. Key parameters that influence the elastoplastic deformation are identified. It is found that the smaller thickness ratio and lower elastic modulus ratio of current collector to an active layer would lead to an earlier plastic yield of the current collector, the larger in-plane strain, and the smaller bending curvature, due to balance between the current collector and the active layer. The smaller yield stress and plastic modulus of current collector have similar impacts on the electrode deformation. 展开更多
关键词 bilayer electrode lithium-ion battery plastic yield BENDING stress
下载PDF
Degradation Diagnostics from the Subsurface of Lithium-Ion Battery Electrodes
4
作者 Xuhui Yao Tomas Samoril +6 位作者 JiriDluhos John F.Watts Zhijia Du Bohang Song SRavi P.Silva Tan Sui Yunlong Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期662-669,共8页
Despite the long-established rocking-chair theory of lithium-ion batteries(LIBs),developing novel characterization methodology with higher spatiotemporal resolution facilitates a better understanding of the solid elec... Despite the long-established rocking-chair theory of lithium-ion batteries(LIBs),developing novel characterization methodology with higher spatiotemporal resolution facilitates a better understanding of the solid electrolyte interphase studies to shape the reaction mechanisms.In this work,we develop a Xenon ion plasma focused ion beam(Xe+PFIB)-based characterization technique to probe the cross-sectional interface of both ternary cathode and graphite anode electrodes,with the focus on revealing the chemical composition and distribution underneath the electrode surface by in-depth analysis of secondary ions.Particularly,the lithium fluoride is detected in the pristine cathode prior to contact with the electrolyte,reflecting that the electrode degradation is in the form of the loss of lithium inventory during electrode preparation.This degradation is related to the hydrolysis of the cathode material and the decomposition of the PVDF binder.Through the quantitative analysis of the transition-metal degradation products,manganese is found to be the dominant element in the newly formed inactive fluoride deposition on the cathode,while no transition metal signal can be found inside the anode electrode.These insights at high resolution implemented via a PFIB-based characterization technique not only enrich the understanding of the degradation mechanism in the LIBs but also identify and enable a high-sensitivity methodology to obtain the chemical survey at the subsurface,which will help remove the capacity-fade observed in most LIBs. 展开更多
关键词 DEGRADATION lithium-ion battery mass spectrometry plasma focused ion beam SUBSURFACE
下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
5
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
下载PDF
Influence of calendering process on the structural mechanics and heat transfer characteristics of lithium-ion battery electrodes via DEM simulations 被引量:3
6
作者 Junpeng Zhang Jingna Sun +1 位作者 Huagui Huang Zhenge Yuan 《Particuology》 SCIE EI CAS CSCD 2024年第2期252-267,共16页
Elucidating the intricate correlation between calendering,structure,and performance is crucial to comprehending the relationship between performance parameters and process steps of lithium-ion batteries(LIBs).Discrete... Elucidating the intricate correlation between calendering,structure,and performance is crucial to comprehending the relationship between performance parameters and process steps of lithium-ion batteries(LIBs).Discrete element method(DEM)simulations were adopted in this work to calculate the interparticle force and stress tensor under incremental calendering process conditions,which revealed the effect of the anisotropy of complex contact force network on the anisotropy of heat transfer within porous electrode.The thermal conductivity of electrode was predicted using porosity to characterize the process-structure-performance correlation.The comprehensive influence of contact number and con-tact area between particles and current collector determines the magnitude of interfacial thermal resistance and interfacial heat transfer coefficient.For the first time,this work quantitatively analyzed the structural mechanics and heat transfer mechanism during calendering process of porous electrodes,and the results indicate a promising way to optimize and design battery electrode structures. 展开更多
关键词 Li-ion battery electrode Structural mechanicsAnisotropy Thermal conductivity Discrete element method
原文传递
Stabilized Nickel-Rich-Layered Oxide Electrodes for High-Performance Lithium-Ion Batteries
7
作者 Zahra Ahaliabadeh Ville Miikkulainen +7 位作者 Miia Mäntymäki Mattia Colalongo Seyedabolfazl Mousavihashemi Lide Yao Hua Jiang Jouko Lahtinen Timo Kankaanpää Tanja Kallio 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期60-73,共14页
This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experimen... This work made use of the Aalto University Otanano-Nanomicroscopy Center and RAMI infrastructures.Financial support from Business Finland NextGenBat[grant number 211849]is greatly acknowledged.The tomography experiment was performed at the beamline ID16B of the European Synchrotron Radiation Facility(ESRF),Grenoble,France,in the frame of proposal CH-6644.The patent titled“Stabilized Positive Electrode Material to Enable High Energy and Power Density Lithium-Ion Batteries”(IPD3173)is pertinent to this manuscript.It was filed by Zahra Ahaliabadeh and Tanja Kallio,and the patent rights are held by Aalto University. 展开更多
关键词 degradation mechanisms electrolyte decomposition hybrid coatings lithium-ion battery lithium-ion kinetics molecular layer deposition NMC811
下载PDF
Design of functional binders for high-specificenergy lithium-ion batteries:from molecular structure to electrode properties
8
作者 Tian Qin Haoyi Yang +2 位作者 Quan Li Xiqian Yu Hong Li 《Industrial Chemistry & Materials》 2024年第2期191-225,共35页
The binder adheres to each component of the electrode to maintain the structural integrity and plays an irreplaceable role in a battery despite its low content.Polyvinylidene difluoride(PVDF),as the dominant binder in... The binder adheres to each component of the electrode to maintain the structural integrity and plays an irreplaceable role in a battery despite its low content.Polyvinylidene difluoride(PVDF),as the dominant binder in commercial battery systems(for cathodes),has acceptably balanced properties between chemical/electrochemical stability and adhesive ability.However,in the pursuit of high-specific-energy batteries featuring high mass loading,high voltage,and large volume changes,the PVDF binder is unable to satisfy the versatile electrode demands and extreme operation conditions.Therefore,developing novel binders with task-specific functionality is of urgent need.Herein,we review the recently developed design strategies of functional binders from the insight of molecular design.The functions and failure mechanisms of the binders are elucidated first.Starting from the basic moiety(functional group)of the polymer molecule,how the constituents,molecular structure,and assembly into a supramolecule will affect the properties of the binders,and furthermore the performance of the electrodes,is discussed at length.Finally,we summarize and provide a future outlook on the opportunities and challenges of functional binders towards future high-specific-energy lithium-ion batteries. 展开更多
关键词 Functional binders Molecular design High-specific-energy electrodes lithium-ion batteries
下载PDF
Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries:From Structural Design to Electrochemical Performance 被引量:1
9
作者 Dujuan Li Yuxuan Guo +4 位作者 Chenxing Zhang Xianhe Chen Weisheng Zhang Shilin Mei Chang-Jiang Yao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期47-81,共35页
Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable en... Aqueous zinc-ion batteries(AZIBs)are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability.In response to the growing demand for green and sustainable energy storage solutions,organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs.Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs,the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry.Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review.Specifically,we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms.In addition,we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances.Finally,challenges and perspectives are discussed from the developing point of view for future AZIBs.We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries Organic electrodes Functional groups Molecular size/geometry Electrochemical performances
下载PDF
Recent progress of self-supported air electrodes for flexible Zn-air batteries 被引量:1
10
作者 Chen Xu Yanli Niu +5 位作者 Vonika Ka-Man Au Shuaiqi Gong Xuan Liu Jianying Wang Deli Wu Zuofeng Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期110-136,I0004,共28页
Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among... Smart wearable devices are regarded to be the next prevailing technology product after smartphones and smart homes,and thus there has recently been rapid development in flexible electronic energy storage devices.Among them,flexible solid-state zinc-air batteries have received widespread attention because of their high energy density,good safety,and stability.Efficient bifunctional oxygen electrocatalysts are the primary consideration in the development of flexible solid-state zinc-air batteries,and self-supported air cathodes are strong candidates because of their advantages including simplified fabrication process,reduced interfacial resistance,accelerated electron transfer,and good flexibility.This review outlines the research progress in the design and construction of nanoarray bifunctional oxygen electrocatalysts.Starting from the configuration and basic principles of zinc-air batteries and the strategies for the design of bifunctional oxygen electrocatalysts,a detailed discussion of self-supported air cathodes on carbon and metal substrates and their uses in flexible zinc-air batteries will follow.Finally,the challenges and opportunities in the development of flexible zinc-air batteries will be discussed. 展开更多
关键词 Bifunctional electrocatalysts Oxygen reduction reaction Oxygen evolution reaction Self-supported air electrodes Flexible zinc-air batteries
下载PDF
Recent Advances in Nanoengineering of Electrode-Electrolyte Interfaces to Realize High-Performance Li-Ion Batteries
11
作者 Na-Yeong Kim Ilgyu Kim +5 位作者 Behnoosh Bornamehr Volker Presser Hiroyuki Ueda Ho-Jin Lee Jun Young Cheong Ji-Won Jung 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期1-13,共13页
A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and developme... A suitable interface between the electrode and electrolyte is crucial in achieving highly stable electrochemical performance for Li-ion batteries,as facile ionic transport is required.Intriguing research and development have recently been conducted to form a stable interface between the electrode and electrolyte.Therefore,it is essential to investigate emerging knowledge and contextualize it.The nanoengineering of the electrode-electrolyte interface has been actively researched at the electrode/electrolyte and interphase levels.This review presents and summarizes some recent advances aimed at nanoengineering approaches to build a more stable electrode-electrolyte interface and assess the impact of each approach adopted.Furthermore,future perspectives on the feasibility and practicality of each approach will also be reviewed in detail.Finally,this review aids in projecting a more sustainable research pathway for a nanoengineered interphase design between electrode and electrolyte,which is pivotal for high-performance,thermally stable Li-ion batteries. 展开更多
关键词 battery electrode ELECTROLYTE interface LITHIUM NANOENGINEERING
下载PDF
An in-situ self-etching enabled high-power electrode for aqueous zinc-ion batteries
12
作者 Shuang Hou Dingtao Ma +5 位作者 Yanyi Wang Kefeng Ouyang Sicheng Shen Hongwei Mi Lingzhi Zhao Peixin Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期399-408,I0009,共11页
Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Pal... Sluggish storage kinetics is considered as the main bottleneck of cathode materials for fast-charging aqueous zinc-ion batteries(AZIBs).In this report,we propose a novel in-situ self-etching strategy to unlock the Palm tree-like vanadium oxide/carbon nanofiber membrane(P-VO/C)as a robust freestanding electrode.Comprehensive investigations including the finite element simulation,in-situ X-ray diffraction,and in-situ electrochemical impedance spectroscopy disclosed it an electrochemically induced phase transformation mechanism from VO to layered Zn_(x)V_(2)O_5·nH_(2)O,as well as superior storage kinetics with ultrahigh pseudocapacitive contribution.As demonstrated,such electrode can remain a specific capacity of 285 mA h g^(-1)after 100 cycles at 1 A g^(-1),144.4 mA h g^(-1)after 1500 cycles at 30 A g^(-1),and even 97 mA h g^(-1)after 3000 cycles at 60 A g^(-1),respectively.Unexpectedly,an impressive power density of 78.9 kW kg^(-1)at the super-high current density of 100 A g^(-1)also can be achieved.Such design concept of in-situ self-etching free-standing electrode can provide a brand-new insight into extending the pseudocapacitive storage limit,so as to promote the development of high-power energy storage devices including but not limited to AZIBs. 展开更多
关键词 In-situ self-etching Free-standing electrode Pseudocapacitive storage HIGH-POWER Zinc-ion batteries
下载PDF
Simple electrode assembly engineering:Toward a multifunctional lead-acid battery
13
作者 Xiaojuan Cao Xiaoyu Yan +4 位作者 Kai Zhao Le Ke Xiaoyi Jiang Lingjiao Li Ning Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期536-543,共8页
Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-ef... Electrochemical energy storage is a promising technology for the integration of renewable energy.Lead-acid battery is perhaps among the most successful commercialized systems ever since thanks to its excellent cost-effectiveness and safety records.Despite of 165 years of development,the low energy density as well as the coupled power and energy density scaling restrain its wider application in real life.To address this challenge,we optimized the configuration of conventional Pb-acid battery to integrate two gas diffusion electrodes.The novel device can work as a Pb-air battery using ambient air,showing a peak power density of 183 mW cm^(−2),which was comparable with other state-of-the-art metal-O_(2)batteries.It can also behave as a fuel cell,simultaneously converting H_(2)and air into electricity with a peak power density of 75 mW cm^(−2).Importantly,this device showed little performance degradation after 35 h of the longevity test.Our work shows the exciting potential of lead battery technology and demonstrates the importance of battery architecture optimization toward improved energy storage capacity. 展开更多
关键词 Lead-acid battery Decoupled electrode reaction Energy storage Discharge capacity Fuel cell
下载PDF
Current collectors’ effects on the electrochemical performance of LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2) suspension electrodes for lithium slurry battery
14
作者 Linshan Peng Yufei Ren +3 位作者 Zhaoqiang Yin Zhitong Wang Xiangkun Wu Lan Zhang 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第8期1306-1313,共8页
Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable sl... Take after the advantages of lithium-ion battery (LIB) and redox flow battery (RFB), semi-solid flow battery (SSFB) is a promising electrochemical energy storage device in renewable energy utilization. The flowable slurry electrode realizes decouple of energy and power density, while it also brings about new challenge to SSFBs, electron transport between active material and the out circuit. In this consideration, three types of current collectors (CCs) are applied to study the resistance and electrochemical performances of slurry cathodes within pouch cells for the first time. It proves that the electronic resistance (Re) between slurry electrode and the CC plays a decisive role in SSFB operation, and it is so large when Al foil is adopted that the cell cannot even work. Contact angle between Ketjen black (KB) slurry without active material (AM) and the CC is a preliminarily sign for the Re, the smaller the angle, the lower the resistance, and the better electrochemical performance of the cell. 展开更多
关键词 Semi-solid flow battery Slurry electrode Current collector Electronic resistance Carbon coated Al
下载PDF
Wood-derived freestanding integrated electrode with robust interface-coupling effect boosted bifunctionality for rechargeable zinc-air batteries
15
作者 Benji Zhou Nengneng Xu +3 位作者 Liangcai Wu Dongqing Cai Eileen HYu Jinli Qiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第12期1835-1846,共12页
Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catal... Fabricating non-noble metal-based carbon air electrodes with highly efficient bifunctionality is big challenge owing to the sluggish kinetics of oxygen reduction/evolution reaction(ORR/OER).The efficient cathode catalyst is urgently needed to further improve the performance of rechargeable zinc-air batteries.Herein,an activation-doping assisted interface modification strategy is demonstrated based on freestanding integrated carbon composite(CoNiLDH@NPC)composed of wood-based N and P doped active carbon(NPC)and CoNi layer double hydroxides(CoNiLDH).In the light of its large specific surface area and unique defective structure,CoNiLDH@NPC with strong interfacecoupling effect in 2D-3D micro-nanostructure exhibits outstanding bifunctionality.Such carbon composites show half-wave potential of 0.85 V for ORR,overpotential of 320 mV with current density of 10 mA cm^(-2) for OER,and ultra-low gap of 0.70 V.Furthermore,highly-ordered open channels of wood provide enormous space to form abundant triple-phase boundary for accelerating the catalytic process.Consequently,zinc-air batteries using CoNiLDH@NPC show high power density(aqueous:263 mW cm^(-2),quasi-solid-state:65.8 mW cm^(-2))and long-term stability(aqueous:500 h,quasi-solid-state:120 h).This integrated protocol opens a new avenue for the rational design of efficient freestanding air electrode from biomass resources. 展开更多
关键词 Wood biomass Bifunctional air electrode Freestanding carbon composite Interface-coupling effect Zinc-air battery
下载PDF
Implications of electrode modifications in aqueous organic redox flow batteries
16
作者 Zahid Manzoor Bhat Mohammad Furquan +3 位作者 Muhammad Aurang Zeb Gul Sial Umair Alam Atif Saeed Alzahrani Mohammad Qamar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期499-510,I0011,共13页
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t... Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory. 展开更多
关键词 Redox flow batteries electrode modification Organic redox molecules Outer sphere and inner sphere
下载PDF
Synergistic Coupling of Sulfide Electrolyte and Integrated 3D FeS_(2)Electrode Toward Long-Cycling All-Solid-State Lithium Batteries
17
作者 Wenyi Liu Yongzhi Zhao +4 位作者 Chengjun Yi Weifei Hu Jiale Xia Yuanyuan Li Jinping Liu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期68-76,共9页
FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface... FeS_(2)cathode is promising for all-solid-state lithium batteries due to its ultra-high capacity,low cost,and environmental friendliness.However,the poor performances,induced by limited electrode-electrolyte interface,severe volume expansion,and polysulfide shuttle,hinder the application of FeS_(2)in all-solid-state lithium batteries.Herein,an integrated 3D FeS_(2)electrode with full infiltration of Li6PS5Cl sulfide electrolytes is designed to address these challenges.Such a 3D integrated design not only achieves intimate and maximized interfacial contact between electrode and sulfide electrolytes,but also effectively buffers the inner volume change of FeS_(2)and completely eliminates the polysulfide shuttle through direct solid-solid conversion of Li2S/S.Besides,the vertical 3D arrays guarantee direct electron transport channels and horizontally shortened ion diffusion paths,endowing the integrated electrode with a remarkably reduced interfacial impedance and enhanced reaction kinetics.Benefiting from these synergies,the integrated all-solid-state lithium battery exhibits the largest reversible capacity(667 mAh g^(-1)),best rate performance,and highest capacity retention of 82%over 500 cycles at 0.1 C compared to both a liquid battery and non-integrated all-solid-state lithium battery.The cycling performance is among the best reported for FeS_(2)-based all-solid-state lithium batteries.This work presents an innovative synergistic strategy for designing long-cycling high-energy all-solid-state lithium batteries,which can be readily applied to other battery systems,such as lithium-sulfur batteries. 展开更多
关键词 3D electrolyte infiltration all-solid-state batteries FeS_(2)nanosheets arrays integrated 3D electrodes sulfide electrolytes
下载PDF
Biomass carbon materials for high-performance secondary battery electrodes:A review
18
作者 Qiankun Zhou Wenjie Yang +5 位作者 Lili Wang Hongdian Lu Shibin Nie Liangji Xu Wei Yang Chunxiang Wei 《Resources Chemicals and Materials》 2024年第2期123-145,共23页
Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon m... Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon materials,distinguished by their eco-friendliness and consistent performance,stand as a pivotal solution to this predicament.Researchers have made significant strides in the integration of porous carbon materials derived from biomass into battery systems.Nevertheless,these materials face issues such as limited efficiency,modest yields,and a complex fabrication process.This paper endeavors to summarize the recent advancements in the utilization of biomass-derived carbon materials within the realm of batteries,offering a comprehensive examination of their battery performance from three distinct perspectives:synthesis,structure,and application.We posit that composite materials composed of biomass-derived carbon align with the trajectory of future development and present extensive potential for application.Ultimately,we will expound upon our profound outlook regarding the furtherance of biomass-derived carbon materials. 展开更多
关键词 Biomass carbon POROSITY DOPANT electrode Ionic batteries
下载PDF
First-principles calculations and experimental studies of Sn-Zn alloys as negative electrode materials for lithium-ion batteries 被引量:3
19
作者 RU Qiang PENG Wei ZHANG Zhiwen HU Shejun LI Yanling 《Rare Metals》 SCIE EI CAS CSCD 2011年第2期160-165,共6页
The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-... The physical characters and electrochemical properties of various phases in a Sn-Zn electrode, such as formation energy, plateau potential, specific capacity, as well as volume expansion, were calculated by the first-principles plane-wave pseudo-potential method based on the den- sity functional theory. Sn-Zn films were also deposited on copper foils by an electroless plating technique. The actual composition and chemical characters were explored by scanning electron microscopy (SEM), X-ray diffraction (XRD), plasma atomic emission spectrometry (ICP), and constant current charge/discharge measurements (CC). The results show that separation phases with tin and zinc including a small quantity of Cu6Sn5 phase were obtained, the initial lithium insertion capacity of the Sn-Zn film was 661 mAh/g, and obvious potential pla- teaus of about 0.4 V and 0.7 V were displayed, which is in accordance with the results of theoretical calculations. The capacity of the Sn-Zn film decreased seriously with the increase of cycle number. 展开更多
关键词 lithium batteries electrochemical electrodes tin alloys first-principles calculations
下载PDF
A chemo-mechanical model coupled with thermal effect on the hollow core–shell electrodes in lithium-ion batteries 被引量:6
20
作者 Bin Hu Zengsheng Ma +2 位作者 Weixin Lei Youlan Zou Chunsheng Lu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2017年第4期199-206,共8页
Electrode is a key component to remain durability and safety of lithium-ion(Li-ion) batteries. Li-ion insertion/removal and thermal expansion mismatch may induce high stress in electrode during charging and discharg... Electrode is a key component to remain durability and safety of lithium-ion(Li-ion) batteries. Li-ion insertion/removal and thermal expansion mismatch may induce high stress in electrode during charging and discharging processes. In this paper, we present a continuum model based on COMSOL Multiphysics software, which involves thermal, chemical and mechanical behaviors of electrodes. The results show that,because of diffusion-induced stress and thermal mismatch, the electrode geometry plays an important role in diffusion kinetics of Li-ions. A higher local compressive stress results in a lower Li-ion concentration and thus a lower capacity when a particle is embedded another, which is in agreement with experimental observations. 展开更多
关键词 lithium-ion battery Diffusion-induced stress COMSOL Chemo-mechanical electrode
下载PDF
上一页 1 2 178 下一页 到第
使用帮助 返回顶部