期刊文献+
共找到197篇文章
< 1 2 10 >
每页显示 20 50 100
Suppression of Co(Ⅱ)ion deposition and hazards:Regulation of SEI film composition and structure
1
作者 Jiaqi Zhan Mingzhu Liu +4 位作者 Yutian Xie Jiarong He Hebing Zhou Lidan Xing Weishan Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期259-265,I0007,共8页
Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering th... Despite the presence of Li F components in the solid electrolyte interphase(SEI)formed on the graphite anode surface by conventional electrolyte,these Li F components primarily exist in an amorphous state,rendering them incapable of effectively inhibiting the exchange reaction between lithium ions and transition metal ions in the electrolyte.Consequently,nearly all lithium ions within the SEI film are replaced by transition metal ions,resulting in an increase in interphacial impedance and a decrease in stability.Herein,we demonstrate that the SEI film,constructed by fluoroethylene carbonate(FEC)additive rich in crystalline Li F,effectively inhibits the undesired Li^(+)/Co^(2+)ion exchange reaction,thereby suppressing the deposition of cobalt compounds and metallic cobalt.Furthermore,the deposited cobalt compounds exhibit enhanced structural stability and reduced catalytic activity with minimal impact on the interphacial stability of the graphite anode.Our findings reveal the crucial influence of SEI film composition and structure on the deposition and hazards associated with transition metal ions,providing valuable guidance for designing next-generation electrolytes. 展开更多
关键词 lithium-ion batteries Transition metal ions sei film Composition and structure
下载PDF
Superior performance for lithium-ion battery with organic cathode and ionic liquid electrolyte
2
作者 Xueqian Zhang Wenjun Zhou +2 位作者 Meng Zhang Zhinan Yang Weiwei Huang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期28-32,I0002,共6页
Organic small structure quinones go with ionic liquids electrolytes would exhibit ultrastable electrochemical properties.In this study,calix[6]quinone(C6Q) cathode was matched with ionic liquid electrolyte Li[TFSI]/[P... Organic small structure quinones go with ionic liquids electrolytes would exhibit ultrastable electrochemical properties.In this study,calix[6]quinone(C6Q) cathode was matched with ionic liquid electrolyte Li[TFSI]/[PY13][TFSI](bis(trifluoromethane)sulfonimide lithium salt/N-methyl-N-pro pylpyrrolidinium bis(trifluoromethanesulfonyl)amide) to assemble lithium-ion batteries(LIBs).The electrochemical performance of LIBs was systematically studied.The capacity retention rates of C6Q through 1000 cycles at current densities of 0.2 C and 0.5 C were 70% and 72%,respectively.At 5 C, the capacity was maintained at 190 mAh g^(-1) after 1000 cycles,and 155 mAh g^(-1) even after 10,000 cycles,comparable to inorganic materials.This work would give a big push to the practical process of organic electrode materials in energy storage. 展开更多
关键词 lithium-ion batteries quinone Ionic liquids Superior performance
下载PDF
Heteroatom-Doped Carbon Spheres from FCC Slurry Oil as Anode Material for Lithium-Ion Battery 被引量:1
3
作者 Yang Guang Wang Dengke +3 位作者 Chen Song Zhang Yue Fu Zijian Liu Wei 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第1期1-10,共10页
A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres(CSs) with good conductivity is proposed by using the fluid catalytic cracking slurry oil(FCCSO) as the carbon source through a pyrolys... A facile injected pyrolysis strategy to synthesize heteroatom-doped carbon spheres(CSs) with good conductivity is proposed by using the fluid catalytic cracking slurry oil(FCCSO) as the carbon source through a pyrolysis reaction process at 700-1000℃.The structures of CSs are characterized by scanning electron microscopy(SEM),transmission electron microscopy(TEM),X-ray diffraction(XRD),Raman spectroscopy,Fourier transform infrared spectroscopy(FT-IR) and X-ray photoelectron spectroscopy(XPS).The effect of preparation conditions on the morphology and its electrochemical properties of CSs acting as the anode material for lithium-ion battery(LIBs) are investigated.The XPS measurement results show that the CSs mainly contain C,N,O,and S elements.With the increase of pyrolysis temperature,the particle size of CSs decreases but the graphitization degree of CSs increases.As the anode material for LIBs,CSs show excellent electrochemical performance with a maximum reversible capacity of 365 mAh/g and an initial coulombic efficiency of 73.8% at a low current density of 50 mA/g.The CSs exhibit excellent cycling stability in a current range of 50 mA/g to 2 A/g,and still can maintain a stable reversible capacity of 347 mAh/g when the current is cycled back to 50mA/g.This is mainly ascribed to the existence of suitable heteroatom content and unique spherical structure of CSs.The heteroatom-doped CSs can provide a new choice for the preparation of high efficiency anode materials for LIBs. 展开更多
关键词 slurry oil carbon spheres lithium-ion battery electrochemical performance
下载PDF
One-Step Solution Synthesis of Carbon Cloth@SiO_(2) Composite for Flexible Anode of Advanced Lithium-Ion Battery
4
作者 陈家媛 周鑫 王春瑞 《Journal of Donghua University(English Edition)》 CAS 2022年第1期22-27,共6页
A flexible anode composite,carbon cloth@SiO_(2)composite(CC@SiO_(2)),was synthesized by a one-step solution method using tetraethyl orthosilicate(TEOS)as the silica source.CC@SiO_(2)can be directly used as the negativ... A flexible anode composite,carbon cloth@SiO_(2)composite(CC@SiO_(2)),was synthesized by a one-step solution method using tetraethyl orthosilicate(TEOS)as the silica source.CC@SiO_(2)can be directly used as the negative electrode material for lithium-ion battery,and its initial reversible deintercalation capacity reaches 1358.7 mA·h·g^(-1).The electrode shows a capacity of 863.8 mA·h·g^(-1)up to 130 cycles at 0.5 A·g^(-1),displaying excellent rate performance and cycle stability. 展开更多
关键词 SILICA carbon cloth(CC) COMPOSITE ANODE lithium-ion battery electrochemical performance
下载PDF
Revisiting aluminum current collector in lithium-ion batteries:Corrosion and countermeasures
5
作者 Shanglin Yang Jinyan Zhong +1 位作者 Songmei Li Bin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期610-634,I0014,共26页
With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary m... With the large-scale service of lithium-ion batteries(LIBs),their failures have attracted significant attentions.While the decay of active materials is the primary cause for LIB failures,the degradation of auxiliary materials,such as current collector corrosion,should not be disregarded.Therefore,it is necessary to conduct a comprehensive review in this field.In this review,from the perspectives of electrochemistry and materials,we systematically summarize the corrosion behavior of aluminum cathode current collector and propose corresponding countermeasures.Firstly,the corrosion type is clarified based on the properties of passivation layers in different organic electrolyte components.Furthermore,a thoroughgoing analysis is presented to examine the impact of various factors on aluminum corrosion,including lithium salts,organic solvents,water impurities,and operating conditions.Subsequently,strategies for electrolyte and protection layer employed to suppress corrosion are discussed in detail.Lastly and most importantly,we provide insights and recommendations to prevent corrosion of current collectors,facilitate the development of advanced current collectors and the implementation of next-generation high-voltage stable LIBs. 展开更多
关键词 lithium-ion battery Aluminum current collector CORROSION Electrochemical performance ELECTROLYTE Protective layer
下载PDF
Enhanced Electrochemical Performances of Ni Doped Cr_(8)O_(21)Cathode Materials for Lithium-ion Batteries
6
作者 TANG Guoli LIU Hanxing +2 位作者 YU Zhiyong YANG Bo KONG Linghua 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1242-1247,共6页
Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that th... Cathode materials,nickel doped Cr_(8)O_(21),were synthesized by a solid-state method.The effects of Ni doping on the electrochemical performances of Cr_(8)O_(21) were investigated.The experimental results show that the discharge capacities of the samples depend on the nickel contents,which increases firstly and then decreases with increasing Ni contents.Optimized Ni_(0.5)Cr_(7.5)O_(21)delivers a first capacity up to 392.6 m Ah·g^(-1)at 0.1C.In addition,Ni doped sample also demonstrates enhanced cycling stability and rate capability compared with that of the bare Cr_(8)O_(21).At 1 C,an initial discharge capacity of 348.7 m Ah·g^(-1)was achieved for Ni_(0.5)Cr_(7.5)O_(21),much higher than 271.4 m Ah·g^(-1)of the un-doped sample,with an increase of more than 28%.Electrochemical impedance spectroscopy results confirm that Ni doping reduces the growth of interface resistance and charge transfer resistance,which is conducive to the electrochemical kinetic behaviors during charge-discharge. 展开更多
关键词 Cr_(8)O_(21) cathode material DOPING electrochemical performances lithium-ion batteries
下载PDF
Recent progress about transmission electron microscopy characterizations on lithium-ion batteries
7
作者 Yihang Liu Qiuyun Li Ziqiang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期39-56,I0002,共19页
With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always... With the rapid development of portable electronics,new energy vehicles,and smart grids,ion batteries are becoming one of the most widely used energy storage devices,while the safety concern of ion batteries has always been an urgent problem to be solved.To develop a safety-guaranteed battery,the characterization of the internal structure is indispensable,where electron microscopy plays a crucial role.Based on this,this paper summarizes the application of transmission electron microscopy(TEM)in battery safety,further concludes and analyzes the aspects of dendrite growth and solid electrolyte interface(SEI)formation that affect the safety of ion batteries,and emphasizes the importance of electron microscopy in battery safety research and the potential of these techniques to promote the future development of this field.These advanced electron microscopy techniques and their prospects are also discussed. 展开更多
关键词 Electron microscopy characterizations lithium-ion batteries DENDRITES sei
下载PDF
Rational manipulation of electrolyte to induce homogeneous SEI on hard carbon anode for sodium-ion battery
8
作者 Lu Liu Lingling Xiao +4 位作者 Zhi Sun Shahid Bashir Ramesh Kasi Yonghong Gu Ramesh Subramaniam 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期414-429,共16页
Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its fut... Sodium-ion batteries (SIBs) have great potential to be the next major energy storage devices due to their obvious advantages and developing advanced electrodes and electrolytes is urgently necessary to promote its future industrialization.However,hard carbon as a state-of-the-art anode of SIBs still suffers from the low initial Coulomb efficiency and unsatisfactory rate capability,which could be improved by forming desirable solid electrolyte interphases (SEI) to some extent.Indeed,the chemistry and morphology of these interfacial layers are fundamental parameters affecting the overall battery operation,and optimizing the electrolyte to dictate the quality of SEI on hard carbon is a key strategy.Hence,this review summarizes the recent research on SEI design by electrolyte manipulation from solvents,salts,and additives.It also presents some potential mechanisms of SEI formation in various electrolyte systems.Besides,the current advanced characterization techniques for electrolyte and SEI structure analyses have been comprehensively discussed.Lastly,current challenges and future perspectives of SEI formation on hard carbon anode for SIBs are provided from the viewpoints of its compositions,evolution processes,structures,and characterization techniques,which will promote SEI efficient manipulation and improve the performance of hard carbon,and further contribute to the development of SIBs. 展开更多
关键词 sei Electrolyte optimization Hard carbon Electrochemical performance Sodium-ion batteries
下载PDF
One-pot Synthesis of Hierarchical Flower-like WS_(2) Microspheres as Anode Materials for Lithium-ion Batteries
9
作者 张向华 TAN Hen +1 位作者 WANG Ze XUE Maoquan 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期1-6,共6页
3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spec... 3D hierarchical flowerlike WS_(2) microspheres were synthesized through a facile one-pot hydrothermal route.The as-synthesized samples were characterized by powder X-ray powder diffraction (XRD),energy-dispersive spectroscopy (EDS),scanning electron microscopy (SEM) and Raman.SEM images of the samples reveal that the hierarchical flowerlike WS_(2) microspheres with diameters of about 3-5μm are composed of a number of curled nanosheets.Electrochemical tests such as charge/discharge,cyclic voltammetry,cycle life and rate performance were carried out on the WS_(2) sample.As an anode material for lithium-ion batteries,hierarchical flowerlike WS_(2) microspheres show excellent electrochemical performance.At a current density of100 mA·g^(-1),a high specific capacity of 647.8 mA·h·g^(-1) was achieved after 120 discharge/charge cycles.The excellent electrochemical performance of WS_(2) as an anode material for lithium-ion batteries can be attributed to its special 3D hierarchical structure. 展开更多
关键词 WS_(2) MICROSPHERES lithium-ion batteries electrochemical performance
下载PDF
Empowering the Future: Exploring the Construction and Characteristics of Lithium-Ion Batteries
10
作者 Dan Tshiswaka Dan 《Advances in Chemical Engineering and Science》 CAS 2024年第2期84-111,共28页
Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic t... Lithium element has attracted remarkable attraction for energy storage devices, over the past 30 years. Lithium is a light element and exhibits the low atomic number 3, just after hydrogen and helium in the periodic table. The lithium atom has a strong tendency to release one electron and constitute a positive charge, as Li<sup> </sup>. Initially, lithium metal was employed as a negative electrode, which released electrons. However, it was observed that its structure changed after the repetition of charge-discharge cycles. To remedy this, the cathode mainly consisted of layer metal oxide and olive, e.g., cobalt oxide, LiFePO<sub>4</sub>, etc., along with some contents of lithium, while the anode was assembled by graphite and silicon, etc. Moreover, the electrolyte was prepared using the lithium salt in a suitable solvent to attain a greater concentration of lithium ions. Owing to the lithium ions’ role, the battery’s name was mentioned as a lithium-ion battery. Herein, the presented work describes the working and operational mechanism of the lithium-ion battery. Further, the lithium-ion batteries’ general view and future prospects have also been elaborated. 展开更多
关键词 lithium-ion Batteries battery Construction battery Characteristics Energy Storage Electrochemical Cells Anode Materials Cathode Materials State of Charge (SOC) Depth of Discharge (DOD) Solid Electrolyte Interface (sei)
下载PDF
KOH-assisted aqueous synthesis of ZIF-67 with high-yield and its derived cobalt selenide/carbon composites for high-performance Li-ion batteries 被引量:1
11
作者 Kai Xue Yanchun Xue +7 位作者 Jing Wang Shuya Zhang Xingmei Guo Xiangjun Zheng Fu Cao Qinghong Kong Junhao Zhang Zhong Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期214-223,共10页
To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imid... To solve the environmental pollution and low yield during the sythesis of zeolitic imidazolate frameworks(ZIFs)and their derived materials,a KOH-assisted aqueous strategy is proposed to synthesize cobalt zeolitic imidazolate framework(ZIF-67)polyhedrons,which are used as precursors to prepare cobalt selenide/carbon composites with different crystal phases(Co_(0.85)Se,CoSe_2).When evaluated as anode material for lithium ion batteries,Co_(0.85)Se/C composites deliver a reversible capacity of 758.7 m A·h·g^(-1)with a capacity retention rate of 90.5%at 1.0 A·g^(-1)after 500 cycles,and the superior rate capability is 620 m A·h·g^(-1)at 2.0 A·g^(-1).The addition of KOH accelerates the production of ZIF-67 crystals by boosting deprotonation of dimethylimidazole,resulting in rapid growth and structures transition from two-dimensional to three-dimensional of ZIF-67 in aqueous solution,which greatly promotes the application of MOFs in the field of energy storage and conversion. 展开更多
关键词 KOH-assisted strategy Synthesis Aqueous solution NANOSTRUCTURE lithium-ion batteries Long cycle performance
下载PDF
Artificial Solid Electrolyte Interphase Acting as “ Armor” to Protect the Anode Materials for High-performance Lithium-ion Battery 被引量:5
12
作者 WANG Haitao TANG Yongbing 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第3期402-409,共8页
The electrochemical performances of lithium-ion batteries(LIBs)are closely related to the interphase between the electrode materials and electrolytes.However,the development of lithium-ion batteries is hampered by the... The electrochemical performances of lithium-ion batteries(LIBs)are closely related to the interphase between the electrode materials and electrolytes.However,the development of lithium-ion batteries is hampered by the formation of uncontrollable solid electrolyte interphase(SEI)and subsequent potential safety issues associated with dendritic formation and cell short-circuits during cycling.Fabricating artificial SEI layer can be one promising approach to solve the above issues.This review summarizes the principles and methods of fabricating artificial SEI for three types of main anodes:deposition-type(e.g.,Li),intercalation-type(e.g.,graphite)and alloy-type(e.g.,Si,Al).The review elucidates recent progress and discusses possible methods for constructing stable artificial SEIs composed of salts,polymers,oxides,and nanomaterials that simultaneously passivate anode against side reactions with electrolytes and regulate Li^+ions transport at interfaces.Moreover,the reaction mechanism of artificial SEIs was briefly analyzed,and the research prospect was also discussed. 展开更多
关键词 lithium-ion battery Artificial solid electrolytc interphase(sei) Anode Reaction mechanism
原文传递
Hierarchically Micro/Nanostructured Current Collectors Induced by Ultrafast Femtosecond Laser Strategy for High-Performance Lithium-ion Batteries 被引量:2
13
作者 Yaya Wang Zexu Zhao +8 位作者 Jiang Zhong Tao Wang Lei Wang Hanjiao Xu Jinhui Cao Jinhao Li Guanhua Zhang Huilong Fei Jian Zhu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第3期969-976,共8页
Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current co... Commercial Cu and Al current collectors for lithium-ion batteries(LIBs)possess high electrical conductivity,suitable chemical and electrochemical stability.However,the relatively flat surface of traditional current collectors causes weak bonding strength and poor electrochemical contact between current collectors and electrode materials,resulting in potential detachment of active materials and rapid capacity degradation during extended cycling.Here,we report an ultrafast femtosecond laser strategy to manufacture hierarchical micro/nanostructures on commercial Al and Cu foils as current collectors for high-performance LIBs.The hierarchically micro/nanostructured current collectors(HMNCCs)with high surface area and roughness offer strong adhesion to active materials,fast electronic delivery of entire electrodes,significantly improving reversible capacities and cyclic stability of HMNCCs based LIBs.Consequently,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(NCM523)cathode with Al HMNCC generated a high reversible capacity after 200 cycles(25%higher than that of cathode with Al CC).Besides,graphite anode with Cu HMNCC also maintained prominent reversible capacity even after 600 cycles.Moreover,the full cell assembled by graphite anode with Cu HMNCC and NCM523 cathode with Al HMNCC achieved high reversible capacity and remarkable cycling stability under industrial-grade mass loading.This study provides promising candidate for achieving high-performance LIBs current collectors. 展开更多
关键词 currentcollectors femtosecondlaserstrategy hierarchical micro/nanostructures high rate performance lithium-ion battery
下载PDF
Seamlessly Merging the Capacity of P into Sb at Same Voltage with Maintained Superior Cycle Stability and Low-temperature Performance for Li-ion Batteries
14
作者 Yaqing Wei Jun He +8 位作者 Jie Zhang Mingyang Ou Yanpeng Guo Jiajun Chen Cheng Zeng Jia Xu Jiantao Han Tianyou Zhai Huiqiao Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期195-201,共7页
Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its int... Among the alloying-type anodes,elemental Sb possesses the suitable yet safe plateau,simple lithiation pathway,small voltage polarization,high conductivity,and superior cycle stability.However,challenge is that its intrinsic capacity is rather low(660 mAh g^(-1)),<1/6 of silicon.Herein,we propose a seamless integration strategy by merging the voltage and capacity of phosphorus and antimony into a solid solution alloy.Interestingly,the enlistment of P is found greatly enlarge the capacity from 660 to 993 mAh g^(-1) for such Sb_(30)P_(30) solid solution,while maintaining a single and stable discharge plateau(~0.79 V)similar to elemental Sb.Various experimental characterizations including XPS,PDF,Raman,and EDS mapping reveal that in such a material the P and Sb atoms have interacted with each other to form a homogenous solid solution alloy,rather than a simple mixing of the two substances.Thus,the Sb_(30)P_(30) exhibits superior rate performances(807 mAh g^(-1) at 5000 mA g^(-1))and cyclability(821 mAh g^(-1) remained after 300 cycles).Furthermore,such Sb_(60-x)P_(x) alloys can even deliver 621 mAh g^(-1) at30℃,which can be served as the alternative anode materials for high-energy and low-temperature batteries.This unique seamless integration strategy based on solid solution chemistry can be easily leveraged to manipulate the capacity of other electrode materials at similar voltage. 展开更多
关键词 alloy anode ANTIMONY lithium-ion batteries low-temperature performance phosphorus
下载PDF
Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries 被引量:31
15
作者 Peiyuan Guan Lu Zhou +5 位作者 Zhenlu Yu Yuandong Sun Yunjian Liu Feixiang Wu Yifeng Jiang Dewei Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期220-235,共16页
Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cat... Lithium-ion batteries (LIB) have received substantial attention in the last 10 years,as they offer great promise as power sources that can lead to the electric vehicle (EV) revolution in the next 5 years.Since the cathode serves as a key component in LIB,its properties significantly affect the performance of the whole system.Recently,the cathode surface modification based on coating technique has been widely employed to enhance the electrochemical performances by improving the material conductivity,stabilising the physical structure of materials,as well as preventing the reactions between the electrode and electrolyte.In this work,we reviewed the present of a number of promising cathode materials for Li-ion batteries.After that,we summarized the very recent research progress focusing on the surface coating strategies,mainly including the coating materials,the coating technologies,as well as the corresponding working mechanisms for cathodes.At last,the challenges faced and future guidelines for optimizing cathode materials are discussed.In this study,we propose that the structure of cathode is a crucial factor during the selection of coating materials and technologies. 展开更多
关键词 lithium-ion battery CATHODE Surface Coating ELECTROCHEMICAL performance
下载PDF
Particulate modification of lithium-ion battery anode materials and electrolytes 被引量:1
16
作者 Zhiwei Li Ning Fu Zhenglong Yang 《Particuology》 SCIE EI CSCD 2023年第12期129-141,共13页
Lithium-ion batteries(LIBs)are considered a rechargeable and commercial energy storage device for electronic equipment such as smartphone and electric vehicles.Despite the prospective future of LIBs,unsatisfied electr... Lithium-ion batteries(LIBs)are considered a rechargeable and commercial energy storage device for electronic equipment such as smartphone and electric vehicles.Despite the prospective future of LIBs,unsatisfied electrochemical properties like reversible capacity,cycle ability and coulombic efficiency still hinder their development.High volume expansion rate,uncontrolled Li dendrite growth and unsatisfied solid electrolyte interphase also occur when LIBs are applied in long-time usage.Numerous modification methods such as exploring high-capacity anode/cathode materials,constructing artificial solid electrolyte interphase and improved conductive binders can be adopted to enhance the performances.Among them,particulate modification for LIBs anode and electrolytes is receiving tremendous attraction in the recent work.The method is composed of changing the morphology and particle size of the active materials,also introduce nano-size additives to the main structure.This review emphasizes on introducing and discussing the modification in following aspects:particulate modification on carbon group IVA element anodes,introduction of additives like transition metal oxide nanoparticles into anode and electrolyte materials,dissipate the influence of Li dendrite growth and ameliorate the performances of solid electrolyte interface.This review hopes to be denoted for the future development of LIBs with the comprehensive understanding on the particulate modification. 展开更多
关键词 Particulate modification Anode materials ELECTROLYTE lithium-ion battery Electrochemical performance
原文传递
Bi nanoparticles in situ encapsulated by carbon film as high-performance anode materials for Li-ion batteries 被引量:2
17
作者 Jun Yang Jiahui Xian +2 位作者 Qinglin Liu Yamei Sun Guangqin Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期524-530,I0015,共8页
Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material... Bismuth (Bi) has indeed inspired great interests in lithium-ion batteries (LIBs) due to the high capacity,but was still limited by the low electrical conductivity and large volume variation.Herein,a composite material based on Bi nanoparticles in situ encapsulated by carbon film (Bi@CF) is prepared successfully through a facile metal–organic framework (MOF)-engaged approach.As anode materials for LIBs,the Bi@CF composites achieved high reversible capacities of 705 and 538 mAh g^(-1)at 0.2 and 0.5 A g^(-1) after200 cycles,and long cycling performance with a stable capacity of 306 mAh g^(-1)at 1.0 A g^(-1) even after 900 cycles.In situ X-ray diffraction (XRD) measurements clearly revealed the conversion between Bi and Li_(3)Bi during the alloying/dealloying process,confirming the good electrochemical reversibility of Bi@CF for Li-storage.The reaction kinetics of this Bi@CF composite was further studied by galvanostatic intermittent titration technique (GITT).This work may provide an inspiration for the elaborate design and facile preparation of alloy-type anode materials for high-performance rechargeable batteries. 展开更多
关键词 Bi nanoparticles Carbon film Anode materials lithium-ion batteries In situ XRD
下载PDF
Thermal Stability and Electrochemical Properties of Separators for Lithium-ion Batteries
18
作者 YI Guangyuan XU Caiyun +3 位作者 LIU Wan QU Deyu WANG Hongbing TANG Haolin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1231-1241,共11页
The mechanical properties,contact angle,thermomechanical and electrochemical properties of PE,PVDF,and ceramic separators were compared.The experimental results show that the PE separator has the largest porosity,the ... The mechanical properties,contact angle,thermomechanical and electrochemical properties of PE,PVDF,and ceramic separators were compared.The experimental results show that the PE separator has the largest porosity,the PVDF separator has the best mechanical properties,wettability,and heat resistance.Three kinds of separators were assembled into lithium-ion batteries for electrochemical tests.Among them,the PE separator has the best rate performance,and the ceramic separator has poor performance in charge-discharge cycles.At the same time,the PE and ceramic separators were tested with different amounts of electrolytes at room temperature and a high temperature,and it is found that the capacity of the PE separator is higher at room temperature,while the performance of the ceramic separator is better at a high temperature.The amount of electrolyte also has a certain influence on its electrochemical performance. 展开更多
关键词 lithium-ion battery SEPARATOR tensile strength electrochemical performance
下载PDF
Hierarchical Zn_(3)V_(2)O_(8)microspheres interconnected via conductive carbon nanotubes as promising anode materials for lithium-ion battery applications
19
作者 Ming-Ming Liu Hai-Tao Yu +3 位作者 Lang Yuan Ting-Feng Yi Fei He Ying Xie 《Rare Metals》 SCIE EI CAS CSCD 2023年第8期2601-2611,共11页
Zn_(3)V_(2)O_(8) was considered as a promising anode material for lithium-ion battery(LIB),because of its high theoretical specific capacity,environmental friendliness,and ease of availability.However,the large volume... Zn_(3)V_(2)O_(8) was considered as a promising anode material for lithium-ion battery(LIB),because of its high theoretical specific capacity,environmental friendliness,and ease of availability.However,the large volume change and low electronic conductivity of Zn_(3)V_(2)O_(8)in repeated charge/discharge cycles have severely limited its applications.To solve the above issues,hierarchical Zn_(3)V_(2)O_(8) microspheres assembled by two-dimensional(2D)nanosheets were successfully synthesized,and carbon nanotubes(CNTs)were further introduced to cross-link the Zn_(3)V_(2)O_(8) microspheres.The interconnected nature of the three-dimensional(3D)conducting network and the special hierarchical morphology were beneficial for improving the stability and conductivity of the composite,leading to the reduction of the impedance and a significant improvement of the electrochemical performance.The reversible capacity of the as-prepared composite can achieve 1049.5mAh·g^(-1)at a current density of 0.2 A·g^(-1)with a capacity retention of~81%after 100 cycles.It is suggested that morphology modulation coupled with interconnecting CNT network is an effective method to boost the electrochemical performance of the anode materials for lithium-ion batteries. 展开更多
关键词 Anode material Zn_(3)V_(2)O_(8) Carbon nanotube(CNT) Electrochemical performance lithium-ion battery(LIB)
原文传递
Characterization and Electrochemical Performance of ZnO Modified LiFePO_4/C Cathode Materials for Lithium-ion Batteries
20
作者 刘树信 殷恒波 +2 位作者 王海滨 何冀川 王洪 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2014年第3期353-360,共8页
To improve the electrical conductivity of LiFePO4 cathode materials, the ZnO modified LiFePO4/C cathode materials are synthesized by a two-step process including solid state synthesis method and precipitation method. ... To improve the electrical conductivity of LiFePO4 cathode materials, the ZnO modified LiFePO4/C cathode materials are synthesized by a two-step process including solid state synthesis method and precipitation method. The structures and compositions of ZnO modified LiFePO4/C cathode materials are characterized and analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive spectroscopy, which indicates that the existence of ZnOhas little or no effect on the crystal structure, particles size and morphology of LiFePO4. The electrochemical performances are also characterized and analyzed with charge-discharge test, cyclic voltammetry and electrochemical impedance spectroscopy. The results show that the existence of ZnO improves the specific capability and lithium ion diffusion rate of LiFePO4 cathode materials and reduces the charge transfer resistance of cell, and the one with 3 wt% ZnO exhibits the best electrochemical performance. 展开更多
关键词 LIFEPO4 electrochemical performance cathode materials lithium-ion batteries surface modification
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部