期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Poly(vinylidene fluoride) Modified Commercial Paper as a Separator with Enhanced Thermal Stability and Electrolyte Affinity for Lithium-ion Battery 被引量:2
1
作者 Ze Zhang Meiling Zhou +2 位作者 Ji Yu Jianxin Cai Zhenyu Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第4期664-670,共7页
Commercial paper is of great potential as a ready-made substrate to make battery separator due to superior electrolyte affinity of cellulose.Nevertheless,the direct utilization of commercial paper as a separator is im... Commercial paper is of great potential as a ready-made substrate to make battery separator due to superior electrolyte affinity of cellulose.Nevertheless,the direct utilization of commercial paper as a separator is impracticable because of its micro-sized holes between coarse cellulose fibers,which might induce short circuits.Herein,a novel reinforced composite separator is proposed by modifying commercial paper(CP)with highdielectric polymer poly(vinylidene fluoride)(PVDF)via a vacuum filtration method.The paper substrate enables excellent electrolyte wettability and high ionic conductivity of the CP-PVDF composite separator due to the superior electrolyte affinity of cellulose molecule.Meanwhile,the strong hydrogen bonds between F atoms in PVDF and H atoms in the-OH groups of cellulose endow the separator with high thermal stability and mechanical strength.Moreover,the CP-PVDF exhibits outstanding interfacial compatibility toward Li metal anode and guarantees the prominent cycle durability of symmetric Li/Li cells up to 600 h.As a result,the LiFePO_(4)/Li cells assembled with CP-PVDF separator show dramatic rate performance with high discharge capacity of 113.7 m Ah g^(-1),and prolonged cycle life at 5 C.This work indicates that the paper-based composite membranes possess great potential for high-safety and electrochemical performance batteries. 展开更多
关键词 commercial paper electrolyte affinity enhanced thermal stability lithium-ion battery PVDF-modified separator
下载PDF
Paraffin/SiC as a Novel Composite Phase-Change Material for a Lithium-Ion Battery Thermal Management System 被引量:2
2
作者 Wei Kang Yiqiang Zhao +3 位作者 Xueheng Jia Lin Hao Leping Dang Hongyuan Wei 《Transactions of Tianjin University》 EI CAS 2021年第1期55-63,共9页
A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silic... A lithium-ion battery thermal management system has always been a hot spot in the battery industry. In this study, a novel high-thermal-conductivity composite phase-change material(CPCM) made by paraffin wax and silicon was adopted to facilitate heat transfer. Moreover, high resistance or even insulation of CPCM is capable of preventing short circuits between the cells. The heat transfer mechanism of CPCMs was determined under a scanning electron microscope. A thermogravimetric analyzer was employed to determine the thermal stability. A diff erential scanning calorimeter was used to explore the thermophysical properties of the composite samples. By comparing the results of the experiment, it was reported that under the silicon carbide content of 5%, the parameters were better than others. The phase-change enthalpy of CPCM was 199.4 J/g, the leakage rate of liquid was 4.6%, and the melting point was 53.6℃. To verify the practicality of CPCM, a three-dimensional layered battery pack model was built in the COMSOL Multiphysics software. By simulating the thermal runaway inside the battery packs of various materials, it was reported that the addition of CPCM significantly narrowed the temperature range of the battery pack from 300–370 to 303–304 K. Therefore, CPCM can eff ectively increase the rate of heat transfer to prevent the chain of thermal runaway reactions. It also enables the battery pack to run at a stable temperature. 展开更多
关键词 lithium-ion battery Phase-change material PARAFFIN Silicon carbide thermal runaway
下载PDF
TiP_2O_7-coated LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathode materials with improved thermal stability and superior cycle life 被引量:1
3
作者 Guan Wu Yingke Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期151-159,共9页
The co-precipitation derived LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathode material was modified by a coating layer of TiP_2O_7 through an ethanol-based process. The TiP_2O_7-coated LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 is charac... The co-precipitation derived LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 cathode material was modified by a coating layer of TiP_2O_7 through an ethanol-based process. The TiP_2O_7-coated LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 is characterized by Xray diffraction analysis, scanning electron microscopy and transmission electron microscopy to investigate the microstructure and morphology. The differential scanning calorimetry was employed to confirm the improved thermal stability. The electrochemical properties were evaluated by the constant-current charge/discharge tests. The TiP_2O_7 coating layer is effectively suppressing the structural degradation and ameliorating the surface status of LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 particles, and the intrinsic rhombohedral layered structure of TiP_2O_7-coated LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 was well maintained during the long-term cycling process, while the surface structure of pristine LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 was degraded from rhombohedral R3 m layered structure to cubic rock-salt structure. The charged state Ni^(4+) ions will easily transform into Ni^(2+) when the electrolytes oxidized at the interface of cathode/electrolytes and formed the cubic rock-salt NiO type structure, and the cubic rock-salt structure without electrochemical activity on the surface of LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 particles will finally accelerate capacity fading. The thermal stability and cyclic performances of the LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 electrode were remarkably improved by TiP_2O_7 coating, the total amount of heat release corresponding to the intensity of thermal runaway were 1075.5 and 964.6 J/g for pristine LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 and TiP_2O_7-coated LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 respectively, the pouch shaped full cells that employed TiP 2 O7-coated LiNi_(0.8)Co_(0.15)Al_(0.05)O_2 as cathode were able to perform more than 2200 cycles at 25 ℃ and more than 1000 cycles at 45 ℃ before the capacity retention fading to 80%. 展开更多
关键词 LiNi0.8Co0.15Al0.05O2 Coating thermal stability Cyclic PERFORMANCES lithium-ion batteries
下载PDF
Transition-metal redox evolution and its effect on thermal stability of LiNixCoyMnzO_(2) based on synchrotron soft X-ray absorption spectroscopy 被引量:2
4
作者 Chen Liang Wenhua Zhang +3 位作者 Zesen Wei Zhaoyu Wang Qingsong Wang Jinhua Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期446-454,I0010,共10页
Based on the synchrotron soft X-ray absorption spectroscopy experiments,the fundamental electronic structures of layered Li NixCoyMnzO_(2)(NCM)are investigated systematically and the data of transitionmetal(TM)L-and O... Based on the synchrotron soft X-ray absorption spectroscopy experiments,the fundamental electronic structures of layered Li NixCoyMnzO_(2)(NCM)are investigated systematically and the data of transitionmetal(TM)L-and O K-edges spectra are collected.Distribution of Ni ions under different oxidation states is evaluated according to linear combination fit.It is found that the ratio of Ni^(4+)expands with the increase of Ni since it dominates in charge compensation during charging,and that the existence of Ni^(3+)is nearly negligible in delithiated NCM.The valence state of Co also strongly depends on Ni content,the perceptible position shift of Co L_(3)-edge absorption peak towards higher energy in Ni-rich material agrees well with the small voltage plateau at around 4.2 V.The stability of Mn is verified as no obvious spectral change with the Mn L-edge is observed.Moreover,as Ni content rises,the O 2p holes near the Femi level increases with higher oxidation state of Ni,indicating the enhanced hybridization of O 2p-TM 3 d.Delithiated NCMs with higher Ni content are prior to lose electron existing in highly hybridized Ni3 dO 2 p bands upon heating,which accounts for the pronounced O_(2)release in phase transitions and the deterioration in thermal stability.These detailed observation of the electronic structure evolution is one of the key ingredients to improving the electrochemical and thermal performance of NCM. 展开更多
关键词 Lithium ion battery safety Cathode material Soft X-ray absorption spectroscopy thermal stability
下载PDF
Bifunctional separator with high thermal stability and lithium dendrite inhibition toward high safety lithium-ion batteries 被引量:2
5
作者 Miaomiao Su Yifu Chen +1 位作者 Suqing Wang Haihui Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期553-556,共4页
Coating inorganic ceramic particles on commercial polyolefin separators has been considered as an effective strategy to improve thermostability of separator.However,the introduction of the coating layer could induce p... Coating inorganic ceramic particles on commercial polyolefin separators has been considered as an effective strategy to improve thermostability of separator.However,the introduction of the coating layer could induce pore blockage on the surface of the polyolefin separator.Herein,a ceramic composite layer that consists of alumina nanoparticles(n-Al_(2)O_(3))and halloysite nanotubes(HNTs)is designed to modify the polyethylene(PE)separator(the modified separator is denoted as AH-PE).The HNTs with hollow nanotubular structure construct a light skeleton and provide fast ion transport channels while Al_(2)O_(3)particles function as heat-resistant fillers to inhibit the shrinkage of the separator at elevated temperatures.The total thickness of AH-PE separator is only 14μm.Consequently,the mass increment of AH-PE separator decreases from 5 g/m^(2)to 3.5 g/m^(2),and the Gurley value reduces by 23%,compared with Al_(2)O_(3)coated PE separator(A-PE).Due to the synergistic effects of Al_(2)O_(3)and HNTs,AH-PE separator exhibits highly improved thermal stability(almost no shrinkage at 170℃for 30 min),high Li^(+)transference number(up to 0.47),and long cycle life of 450 h for Li|Li cells.Moreover,the Li Fe PO_(4)/Li cells assembled with AH-PE separators demonstrate improved rate capability and safety performance. 展开更多
关键词 SEPARATOR Lithium dendrite thermal stability Halloysite nanotubes lithium-ion batteries
原文传递
Enhanced wettability and thermal stability of nano-SiO2/poly(vinyl alcohol)-coated polypropylene composite separators for lithium-ion batteries 被引量:6
6
作者 Zhixiong Zhang Wenhui Yuan Li Li 《Particuology》 SCIE EI CAS CSCD 2018年第2期91-98,共8页
To improve the electrolyte wettability and thermal stability of polypropylene (PP) separators, nano- SiO2/poly(vinyl alcohol)-coated PP composite separators were prepared using a simple but efficient sol-gel and d... To improve the electrolyte wettability and thermal stability of polypropylene (PP) separators, nano- SiO2/poly(vinyl alcohol)-coated PP composite separators were prepared using a simple but efficient sol-gel and dip-coating method. The effects of the tetraethoxysilane (TEOS) dosage on the morphology, wettability, and thermal stability of the composite separators were investigated using Fourier-transform infrared spectroscopy, scanning electron microscopy, and contact-angle measurements. All the composite separators gave a smaller contact angle, higher electrolyte uptake, and lower thermal shrinkage compared with the PP separator, indicating enhanced wettability and thermal stability. Unlike the case for a traditional physical mixture, Si-O-C covalent bonds were formed in the coating layer. The composite separator with a TEOS dosage of 7.5 wt% had a unique porous structure combining hierarchical pores with interstitial voids, and gave the best wettability and thermal stability. The ionic conductivity of the composite separator containing 7.5 wt% TEOS was 1.26 mS/cm, which is much higher than that of the PP separator (0.74 mS/cm). The C-rate and cycling performances of batteries assembled with the composite separator containing 7.5 wt% TEOS were better than those of batteries containing PP separators. 展开更多
关键词 Wettability thermal stability Composite separator lithium-ion batteries
原文传递
Interconnected sandwich structure carbon/Si-SiO_2/carbon nanospheres composite as high performance anode material for lithium-ion batteries 被引量:3
7
作者 Yuanjin Du Mengyan Hou +3 位作者 Dan Zhou Yonggang Wang Congxiao Wang Yongyao Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2014年第3期315-323,共9页
In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficientl... In the present work,an interconnected sandwich carbon/Si-SiO2/carbon nanospheres composite was prepared by template method and carbon thermal vapor deposition(TVD).The carbon conductive layer can not only efficiently improve the electronic conductivity of Si-based anode,but also play a key role in alleviating the negative effect from huge volume expansion over discharge/charge of Si-based anode.The resulting material delivered a reversible capacity of 1094 mAh/g,and exhibited excellent cycling stability.It kept a reversible capacity of 1050 mAh/g over 200 cycles with a capacity retention of 96%. 展开更多
关键词 silicon CARBON anode materials lithium-ion batteries template method carbon thermal vapor deposition
下载PDF
Overcharge-to-thermal-runaway behavior and safety assessment of commercial lithium-ion cells with different cathode materials:A comparison study 被引量:18
8
作者 Zhenpo Wang Jing Yuan +4 位作者 Xiaoqing Zhu Hsin Wang Lvwei Huang Yituo Wang Shiqi Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期484-498,共15页
In this paper,overcharge behaviors and thermal runaway(TR)features of large format lithium-ion(Liion)cells with different cathode materials(LiFePO4(LFP),Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(2)(NCM111),Li[Ni_(0.6)Co_(0.2)Mn_... In this paper,overcharge behaviors and thermal runaway(TR)features of large format lithium-ion(Liion)cells with different cathode materials(LiFePO4(LFP),Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_(2)(NCM111),Li[Ni_(0.6)Co_(0.2)Mn_(0.2)]O_(2)(NCM622)and Li[Ni_(0.8)Co_(0.1)Mn_(0.1)]O_(2)(NCM811))were investigated.The results showed that,under the same overcharge condition,the TR of LFP Li-ion cell occurred earlier compared with the NCM Li-ion cells,indicating its poor overcharge tolerance and high TR risk.However,when TR occurred,LFP Li-ion cell exhibited lower maximum temperature and mild TR response.All NCM Liion cells caught fire or exploded during TR,while the LFP Li-ion cell only released a large amount of smoke without fire.According to the overcharge behaviors and TR features,a safety assessment score system was proposed to evaluate the safety of the cells.In short,NCM Li-ion cells have better performance in energy density and overcharge tolerance(or low TR risk),while LFP Li-ion cell showed less severe response to overcharging(or less TR hazards).For NCM Li-ion cells,as the ratio of nickel in cathode material increases,the thermal stability of the cathode materials becomes poorer,and the TR hazards increase.Such a comparison study on large format Li-ion cells with different cathode materials can provide deeper insights into the overcharge behaviors and TR features,and provide guidance for engineers to reasonably choose battery materials in automotive applications. 展开更多
关键词 lithium-ion battery Cathode materials OVERCHARGE thermal runaway Overcharge tolerance Safety assessment
下载PDF
Enabling the thermal stability of solid electrolyte interphase in Li-ion battery 被引量:7
9
作者 Chenxi Zu Huigen Yu Hong Li 《InfoMat》 SCIE CAS 2021年第6期648-661,共14页
Lithium-ion batteries(LIBs)provide power for a variety of applications from the portable electronics to electric vehicles,and now they are supporting the smart grid.Safety of LIBs is of paramount importance in these s... Lithium-ion batteries(LIBs)provide power for a variety of applications from the portable electronics to electric vehicles,and now they are supporting the smart grid.Safety of LIBs is of paramount importance in these scenarios.Specifically,thermal safety arouses increasing attention with the piling-up of LIBs.Heat generation can be significant.Hazardous incidents happen when thermal runaway occurs in a single cell level and drives the battery pack failure.Moreover,thermal runaway of LIBs is believed to originate from the exothermic reactions starting from the breakdown of the solid/cathode electrolyte interphase(SEI/CEI).To mitigate this challenge for a safe operation of LIBs,one straightforward and low-cost method is to build thermally stable SEI/CEI.This review gives an overview on the thermal behaviors of SEI/CEI as the first step in thermal runaway.We analyzed the electrolyte composition and the formation process of SEI/CEI that enable SEI/CEI of high thermal stability.It is identified that the stable lithium salts coupled with solvents of high boiling point is one way to enhance thermal stability of the battery system.In addition,the unsaturated bonds,halogen,phosphorus,sulfur,phenol,organic borate,borane,and silane are functional components to facilitate the formation of a thermally stable SEI/CEI,which is the immediate solution to boost thermal stability of high capacity electrodes.Moreover,in-situ polymerization/solidification is effective in enhancing simultaneously the electrochemical,chemical,and thermal stability.Finally,we revealed that only by constructing a stable SEI/CEI simultaneously could we harvest a battery system of high thermal stability. 展开更多
关键词 electrolyte formula formation process rechargeable lithium-ion batteries SEI/CEI thermal stability
原文传递
Thermal Stability of Supercapacitor for Hybrid Energy Storage System in Lightweight Electric Vehicles:Simulation and Experiments 被引量:1
10
作者 Vima Mali Brijesh Tripathi 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第1期170-178,共9页
Recent research findings indicate that the non-monotonic consumption of energy from lithium-ion(Li-ion)batteries results in a higher heat generation in electrical energy storage systems.During peak demands,a higher he... Recent research findings indicate that the non-monotonic consumption of energy from lithium-ion(Li-ion)batteries results in a higher heat generation in electrical energy storage systems.During peak demands,a higher heat generation due to high discharging current increases the temperature from 80℃ to 120℃,thereby resulting in thermal runaway.To address peak demands,an additional electrical energy storage component,namely supercapacitor(SC),is being investigated by various research groups.This paper provides insights into the capability of SCs in lightweight electric vehicles(EVs)to address peak demands using the worldwide harmonized light-duty driving test cycle(WLTC)driving profile in MATLAB/Simulink at different ambient temperatures.Simulation results indicate that temperature imposes a more prominent effect on Li-ion batteries compared with SCs under peak demand conditions.The effect of the discharging rate limit on the Li-ion battery current is studied.The result shows that SCs can accommodate the peak demands for a low discharging current limit on the battery,thereby reducing heat generation.Electrochemical impedance spectroscopy and cyclic voltammetry are performed on SCs to analyze their thermal performance at different temperatures ranging from 0℃ to 75℃ under different bias values of-0.6,0,0.6,and 1 V,respectively.The results indicate a higher specific capacitance of the SC at an optimum operation temperature of 25℃ for the studied bias.This study shows that the hybrid combination of the Li-ion battery and SC for a lightweight EV can address peak demands by reducing thermal stress on the Li-ion battery and increasing the driving range. 展开更多
关键词 Electric vehicle lithium-ion battery SUPERCAPACITOR thermal stability
原文传递
Modification strategies improving the electrochemical and structural stability of high-Ni cathode materials
11
作者 Yoon Bo Sim Hami Lee +1 位作者 Junyoung Mun Ki Jae Kim 《Journal of Energy Chemistry》 SCIE EI CAS 2024年第9期185-205,共21页
With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)C... With the increasing spotlight in electric vehicles,there is a growing demand for high-energy-density batteries to enhance driving range.Consequently,several studies have been conducted on high-energy-density LiNi_(x)Co_(y)Mn_(z)O_(2)cathodes.However,there is a limit to permanent performance deterioration because of side reactions caused by moisture in the atmosphere and continuous microcracks during cycling as the Ni content to express high energy increases and the content of Mn and Co that maintain structural and electrochemical stabilization decreases.The direct modification of the surface and bulk regions aims to enhance the capacity and long-term performance of high-Ni cathode materials.Therefore,an efficient modification requires a study based on a thorough understanding of the degradation mechanisms in the surface and bulk region.In this review,a comprehensive analysis of various modifications,including doping,coating,concentration gradient,and single crystals,is conducted to solve degradation issues along with an analysis of the overall degradation mechanism occurring in high-Ni cathode materials.It also summarizes recent research developments related to the following modifications,aims to provide notable points and directions for post-studies,and provides valuable references for the commercialization of stable high-energy-density cathode materials. 展开更多
关键词 High energy density High-Ni cathode materials Degradation Structural stability lithium-ion battery
下载PDF
Study about thermal runaway behavior of high specific energy density Li-ion batteries in a low state of charge 被引量:6
12
作者 Shiqiang Liu Tianyi Ma +5 位作者 Zhen Wei Guangli Bai Huitian Liu Dapeng Xu Zhongqiang Shan Fang Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期20-27,I0002,共9页
Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal sta... Lithium-ion batteries are widely used in electric vehicles and electronics, and their thermal safety receives widespread attention from consumers. In our study, thermal runaway testing was conducted on the thermal stability of commercial lithium-ion batteries, and the internal structure of the battery was analyzed with an in-depth focus on the key factors of the thermal runaway. Through the study of the structure and thermal stability of the cathode, anode, and separator, the results showed that the phase transition reaction of the separator was the key factor affecting the thermal runaway of the battery for the condition of a low state of charge. 展开更多
关键词 lithium-ion battery thermal runaway State of charge thermal stability
下载PDF
Safer Lithium-Ion Batteries from the Separator Aspect:Development and Future Perspectives 被引量:7
13
作者 Zhifang Liu Yingjun Jiang +5 位作者 Qiaomei Hu Songtao Guo Le Yu Qi Li Qing Liu Xianluo Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期336-362,共27页
With the rapid development of lithium-ion batteries(LIBs),safety problems are the great obstacles that restrict large-scale applications of LIBs,especially for the high-energy-density electric vehicle industry.Develop... With the rapid development of lithium-ion batteries(LIBs),safety problems are the great obstacles that restrict large-scale applications of LIBs,especially for the high-energy-density electric vehicle industry.Developing component materials(e.g.,cathode,anode,electrolyte,and separator)with high thermal stability and intrinsic safety is the ultimate solution to improve the safety of LIBs.Separators are crucial components that do not directly participate in electrochemical reactions during charging/discharging processes,but play a vital role in determining the electrochemical performance and safety of LIBs.In this review,the recent advances on traditional separators modified with ceramic materials and multifunctional separators ranging from the prevention of the thermal runaway to the flame retardant are summarized.The component–structure–performance relationship of separators and their effect on the comprehensive performance of LIBs are discussed in detail.Furthermore,the research challenges and future directions toward the advancement in separators for high-safety LIBs are also proposed. 展开更多
关键词 energy storage high safety lithium-ion batteries SEPARATORS thermal stability
下载PDF
Comparative study of different membranes as separators for rechargeable lithium-ion batteries 被引量:4
14
作者 Hong-yan Guan Fang Lian +3 位作者 Yan Ren Yan Wen Xiao-rong Pan Jia-lin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期598-603,共6页
Membranes of polypropylene (PP), PP coated with nano-A1203, PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/P... Membranes of polypropylene (PP), PP coated with nano-A1203, PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/PP) were comparatively studied. Their physical properties were characterized by means of thermal shrinkage test, liquid electrolyte uptake, and field emission scanning electron microscopy (FESEM). Results show that, for the different membranes as PP, PP coated with nanowA1203, PP electrospun with PVdF-HFP, and PP/PE/PP, the thermal shrinkages are 14%, 6%, 12.6%, and 13.3%, while the liquid electrolyte uptakes are 110%, 150%, 217%, and 129%, respectively. In addition, the effects on the performance of lithium-ion batteries (LiFePO4 and LiNil/3Col/3Mn1/302 as the cathode material) were investigated by AC impedance and galvanostatic charge/discharge test. It is found that PP coated with A1203 and PP electrospun with PVdF-HFP can effectively increase the wettability between the cathode material and liquid electrolyte, and therefore reduce the charge transfer resistance, which improves the capacity retention and battery performance. 展开更多
关键词 lithium-ion batteries membranes SEPARATORS thermal stability electrochemical properties
下载PDF
过渡金属比例对锂离子电池LiNi_(x)Co_(y)Mn_(z)O_(2)层状材料电化学性能及热特性的影响
15
作者 梁晨 童邦 +3 位作者 李师 魏泽森 孙金华 王青松 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第6期1936-1950,共15页
为了揭示LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM)的性能随过渡金属(TM)成分的变化规律,系统研究TM比例对不同NCM材料的结构、形貌、电化学性能和热行为的影响。镍含量的增加能够提高可逆容量,但速率性能和循环稳定性变差。在富镍NCM中,Li^(+)... 为了揭示LiNi_(x)Co_(y)Mn_(z)O_(2)(NCM)的性能随过渡金属(TM)成分的变化规律,系统研究TM比例对不同NCM材料的结构、形貌、电化学性能和热行为的影响。镍含量的增加能够提高可逆容量,但速率性能和循环稳定性变差。在富镍NCM中,Li^(+)的动力学抑制和电子导电性差是容量损失的主要原因。通过原位和非原位微量热法对不同NCM的热行为进行对比。结果表明,随着Ni含量的降低,材料的热稳定性显著提高。通过对NCM中Li剩余量的分析,对相变相关的氧释放量进行评估。结果表明,富镍材料在脱锂后出现更严重的结构恶化,起始温度更低,热释放量更多。综合表征表明,LiNi_(0.5)Co_(0.3)Mn_(0.2)O_(2)在电化学性能和安全性能间实现良好的平衡。 展开更多
关键词 镍钴锰酸锂 热稳定性 结构演变 三元材料 锂离子电池安全
下载PDF
热电池用SnS_(2)/CoS_(2)复合正极材料的制备及其电化学性能研究
16
作者 孟剑 唐军 +2 位作者 罗莉 唐立成 潘志鹏 《电源技术》 CAS 北大核心 2024年第7期1356-1360,共5页
采用烧结法制备了不同摩尔配比的SnS_(2)/CoS_(2)复合正极材料,并对三种配比复合正极材料的物理和电化学性能进行了测试。结果表明:SnS_(2)/CoS_(2)复合正极材料的热解温度为600℃,较高的热解温度使其具备作为热电池正极材料应用的基础... 采用烧结法制备了不同摩尔配比的SnS_(2)/CoS_(2)复合正极材料,并对三种配比复合正极材料的物理和电化学性能进行了测试。结果表明:SnS_(2)/CoS_(2)复合正极材料的热解温度为600℃,较高的热解温度使其具备作为热电池正极材料应用的基础。另外,当复合正极材料SnS_(2)和CoS_(2)摩尔比为1∶1时,复合正极材料单体电池的比能量较高,在100 mA/cm^(2)电流密度下放电,以1.5 V为截止电压,比容量达到了278.51 mAh/g,较纯SnS_(2)正极材料的电池比能量提升了19.4%,相对纯CoS_(2)正极材料的电池比能量也提升了6.2%。复合正极材料较高的比能量主要得益于其较高的电压平台和较低的内阻。 展开更多
关键词 复合材料 正极材料 热电池 电化学性能
下载PDF
Surface Doping vs.Bulk Doping of Cathode Materials for Lithium-Ion Batteries:A Review 被引量:7
17
作者 Huaming Qian Haoqi Ren +8 位作者 Ying Zhang Xianfeng He Wenbin Li Jingjing Wang Junhua Hu Hong Yang Hirbod Maleki Kheimeh Sari Yu Chen Xifei Li 《Electrochemical Energy Reviews》 SCIE EI 2022年第4期254-285,共32页
To address the capacity degradation,voltage fading,structural instability and adverse interface reactions in cathode materi-als of lithium-ion batteries(LIBs),numerous modification strategies have been developed,mainl... To address the capacity degradation,voltage fading,structural instability and adverse interface reactions in cathode materi-als of lithium-ion batteries(LIBs),numerous modification strategies have been developed,mainly including coating and doping.In particular,the important strategy of doping(surface doping and bulk doping)has been considered an effective strategy to modulate the crystal lattice structure of cathode materials.However,special insights into the mechanisms and effectiveness of the doping strategy,especially comparisons between surface doping and bulk doping in cathode materials,are still lacking.In this review,recent significant progress in surface doping and bulk doping strategies is demonstrated in detail by focusing on their inherent differences as well as effects on the structural stability,lithium-ion(Li-ion)diffusion and electrochemical properties of cathode materials from the following mechanistic insights:preventing the exposure of reactive Ni on the surface,stabilizing the Li slabs,mitigating the migration of transition metal(TM)ions,alleviating unde-sired structural transformations and adverse interface issues,enlarging the Li interslab spacing,forming three-dimensional(3D)Li-ion diffusion channels,and providing more active sites for the charge-transfer process.Moreover,insights into the correlation between the mechanisms of hybrid surface engineering strategies(doping and coating)and their influences on the electrochemical performance of cathode materials are provided by emphasizing the stabilization of the Li slabs,the enhancement of the surface chemical stability,and the alleviation of TM ion migration.Furthermore,the existing challenges and future perspectives in this promising field are indicated. 展开更多
关键词 lithium-ion batteries Cathode materials Surface doping Bulk doping Hybrid surface engineering Structural stability lithium-ion diffusion
原文传递
The existence form and synergistic effect of P in improving the structural stability and electrochemical performance of Li_(2)Mn_(0.5)Fe_(0.5)SiO_(4)/C cathode materials 被引量:3
18
作者 Lei Wei Shi-Xi Zhao +2 位作者 Xia Wu Shu-Jin Zhao Ce-Wen Nan 《Journal of Materiomics》 SCIE EI 2018年第3期179-186,共8页
Nano-Li_(2)Mn_(0.5)Fe_(0.5)SiO_(4)/C cathode material is synthesized by a hydrothermal route and phosphorus substitution is applied to improve structural stability and electrochemical properties.At low substitution co... Nano-Li_(2)Mn_(0.5)Fe_(0.5)SiO_(4)/C cathode material is synthesized by a hydrothermal route and phosphorus substitution is applied to improve structural stability and electrochemical properties.At low substitution content,P element completely enters into the lattice,forms[PO_(4)]tetrahedrons and partially replaces[SiO_(4)]tetrahedrons,which is confirmed by X-ray diffraction and X-ray photoelectron spectroscope measurements.Phosphorus substitution helps to suppress the change of coordination number of Mn and stabilize the material structure to some extent,obtaining better electrochemical performance in the early cycle.With the increase of P content,parts of P element exist in Li_(3)PO_(4)which distributes uniformly and co-exists with active substance.Electrochemical tests prove that existing Li_(3)PO_(4)has positive impacts on cycle and rate performance,and the lithium ion diffusion coefficient increases by about 14 times than pristine sample.Under the synergistic effects of phosphate substation and proper Li_(3)PO_(4),Li_(2)Mn_(0.5)Fe_(0.5)SiO_(4)/C shows enhanced electrochemical performances. 展开更多
关键词 lithium-ion batteries Cathode material Li_(2)Mn_(0.5)Fe_(0.5)SiO_(4)/C P-DOPING Synergistic effect Structural stability
原文传递
Aromatic Carbon Coated Tin Composites as Anode Materials for Lithium Ion Batteries
19
作者 AI Changchun HU Yi +3 位作者 LIU Yang SUN Jutang TIAN Qifeng WU Yuanxin 《Wuhan University Journal of Natural Sciences》 CAS 2013年第3期191-194,共4页
Aromatic carbon coated tin composites(A/Sn) have been prepared by thermal decomposition of the stannous 1,8-naphthalenedicarboxylate precursors,which is a reformative preparation method.Sugar carbon coated tin compo... Aromatic carbon coated tin composites(A/Sn) have been prepared by thermal decomposition of the stannous 1,8-naphthalenedicarboxylate precursors,which is a reformative preparation method.Sugar carbon coated tin composites(S/Sn) also are prepared as a contrast with the A/Sn composites.The morphology and composition of the products were characterized by Scanning Electricity Microscopy(SEM) and X-Ray Diffraction(XRD).Their electrochemical performance as anode materials for lithium ion batteries were investigated;the results indicated that these materials exhibited good performance,and the cycle stability of A/Sn composites is especially superior to the S/Sn composites due to its special carbon resource. 展开更多
关键词 aromatic carbon coated tin composites thermal decomposition anode materials lithium-ion batteries
原文传递
Electrolyte Engineering for Safer Lithium-Ion Batteries:A Review 被引量:4
20
作者 Chencheng Cao Yijun Zhong Zongping Shao 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第9期1119-1141,共23页
Despite being widely used in people's daily life,the safety issue of lithium-ion batteries(LIBs)has become the major barrier for them to be applied in electrical vehicles(EVs)or large-scale energy storage.Typicall... Despite being widely used in people's daily life,the safety issue of lithium-ion batteries(LIBs)has become the major barrier for them to be applied in electrical vehicles(EVs)or large-scale energy storage.Typically,due to the use of liquid electrolytes containing flammable solvents which are easily oxidized by excessive and accumulated heat,the potential thermal runaway is a major safety concern for traditional LIBs.A strategy for a safer electrolyte design is controlling the flammability and volatility of the liquid electro-lytes,to effectively prevent thermal runaway,thus avoiding fire or other risks.Through this study,the mechanisms of thermal runa-way and the recent progress in electrolyte engineering toward LIBs were summarized,covering the major strategies including adding flame-retardants,the utilization of ionic liquid electrolytes and solid electrolytes.The characteristics,strengths and weaknesses of different strategies were discussed.New designing directions of safer electrolytes for the LIBs were also provided. 展开更多
关键词 thermal runaway Lithium battery Flame retardant Polymer electrolyte Solid-state electrolyte Electrolyte additives Electrode material thermal stability
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部