期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Chemical bonding of perovskite LaFeO_(3) with Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2) to moderate anion redox for achieving high cycling stability
1
作者 Xin Zhang Chaochao Fu +5 位作者 Dong Luo Xiaoqing Liu Qiao Wang Baoyun Li Guangshe Li Liping Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期330-339,共10页
Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition ... Oxygen anion redox reaction provides a high theoretical capacity for Li-rich manganese-based cathodes.However,irreversible surface oxygen release often results in further oxygen loss and exacerbates the decomposition of the electrolyte,which could reduce the capacity contribution from the anionic redox and produce more acidic substances to corrode the surface of the material.In this paper,the surface oxygen release is suppressed by moderating oxygen anion redox activity via constructing chemical bonds between M(M=Fe and La)in LaFeO_(3)and surface oxygen anions of Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2).The constructed interface layer stabilizes the surface lattice oxygen and retards the electrolyte from being attacked by the nucleophilic oxygen generated in the process of oxygen release,as evidenced by Differential Electrochemical Mass Spectrometry(DEMS)and X-ray Photoelectron Spectroscopy(XPS)detections.Moreover,in the charge and discharge process,the formed FeF_(3),located at the cathode electrolyte interfacial layer,is conducive to the stability of the cathode surface.The modified Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)electrode with 3 wt%LaFeO_(13)exhibits a high specific capacity of 189.5 mA h g-at 1C(200 mA g^(-1))after 150 cycles with capacity retentions of 96.6%,and 112.6 mA h g^(-1)(84.7%)at 5C after 200 cycles higher than the pristine sample.This study provides a rational design chemical bonding method to suppress the oxygen release from the cathode surface and enhance cyclic stability. 展开更多
关键词 lithium battery li_(1.2)mn_(0.6)ni_(0.2)o_(2) oxygen release Interface chemical bond Electrolyte decomposition
下载PDF
Li_(2)ZrO_(3)原位包覆提升LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)三元材料电化学性能研究 被引量:2
2
作者 张家祥 田小龙 李西安 《电源技术》 CAS 北大核心 2023年第7期861-865,共5页
高镍三元LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM60)因其具有较高的放电比容量以及能量密度,是一种非常有发展潜力的锂离子电池正极材料。然而由于较为严重的结构/界面恶化现象(如微裂纹,界面副反应等),NCM60材料的电化学性能及循环寿命... 高镍三元LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM60)因其具有较高的放电比容量以及能量密度,是一种非常有发展潜力的锂离子电池正极材料。然而由于较为严重的结构/界面恶化现象(如微裂纹,界面副反应等),NCM60材料的电化学性能及循环寿命受到严重的限制。采用单晶化策略,成功合成出了微米级单晶NCM60正极材料;并以Ni_(0.6)Co_(0.2)Mn_(0.2)(OH)_(2)前驱体为基体,采用预包覆和共锂化的方法,在单晶正极材料NCM60表面均匀包覆Li_(2)ZrO_(3)快离子导体层。一方面,表面均匀包覆Li_(2)ZrO_(3)层改善了材料充放电过程中锂离子的扩散动力学,有助于降低电极极化程度;另一方面,Li_(2)ZrO_(3)具有稳定的晶体结构,通过与NCM60材料紧密结合,提高材料机械稳定性,有效抑制微裂纹的产生并减轻界面副反应程度。正如预期,适量Li_(2)ZrO_(3)改性的材料(LZO@NCM60)展现出优异的电化学性能,在1 C(170 mA/g)电流密度,2.95~4.6 V电压范围内循环150次后仍有158.5 mAh/g的放电比容量,容量保持率高达86.7%。深入研究了表面修饰对材料界面机制的影响,对下一代高能锂离子电池正极材料的开发具有一定借鉴意义。 展开更多
关键词 锂离子电池 lini_(0.6)Co_(0.2)mn_(0.2)o_(2)正极材料 单晶结构 li_(2)Zro_(3)原位包覆
下载PDF
以废旧锂离子电池正极材料为原料制备Li_(1.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)AlxO_(2) 被引量:1
3
作者 任宇昊 李伟伟 +2 位作者 姚路 李鹏发 司江菊 《有色金属(冶炼部分)》 CAS 北大核心 2022年第4期92-95,共4页
以废旧锂离子电池正极材料为原料,采用燃烧法制备高性能富锂锰基正极材料Li_(1.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)Al_(x)O_(2),实现了多组元金属离子的高值转化和全量利用,从根本上缩短产品化路径,消减二次污染。SEM和XRD检测表明,所有... 以废旧锂离子电池正极材料为原料,采用燃烧法制备高性能富锂锰基正极材料Li_(1.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)Al_(x)O_(2),实现了多组元金属离子的高值转化和全量利用,从根本上缩短产品化路径,消减二次污染。SEM和XRD检测表明,所有样品形貌差别不大,基本呈球形,直径约0.5μm,样品均无杂相峰出现,且都具有六方晶系的ɑ-NaFeO_(2)结构、R3m空间群,具有良好的层状结构。电化学测试表明,当x=0.03时,所得样品具有最佳的电化学性能,0.5 mA恒电流条件下,首次放电容量为238 mAh/g,200周循环后放电容量保持率为80.3%。 展开更多
关键词 废旧锂离子电池 正极材料 燃烧法 li_(1.2)mn_(0.54-x)ni_(0.13)Co_(0.13)Al_(x)o_(2)
下载PDF
Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3) coated Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) for enhancing electrochemical performance of lithium-ion batteries 被引量:1
4
作者 LAI Xiang-wan HU Guo-rong +3 位作者 PENG Zhong-dong CAO Yan-bing DU Ke LIU Ye-xiang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第5期1463-1478,共16页
Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle ... Lithium(Li)-rich manganese(Mn)-based cathode Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LRNCM)has attracted considerable attention owing to its high specific discharge capacity and low cost.However,unsatisfactory cycle performance and poor rate property hinder its large-scale application.The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate.In this study,Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2) is modified by using Li_(1.4)Al_(0.4)Ti_(1.6)(PO_(4))_(3)(LATP)ionic conductor.The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C,with a capacity retention of 81%.Compared with the uncoated pristine LRNCM(188.4 m A·h/g and 76%),LRNCM after the LATP modification shows superior cycle performance.Moreover,the lithium-ion diffusion coefficient D_(Li+)is a crucial factor affecting the rate performance,and the D_(Li+)of the LRNCM material is improved from 4.94×10^(-13) to 5.68×10^(-12)cm^(2)/s after modification.The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C,with an improved rate performance.Thus,the modification layer can considerably enhance the electrochemical performance of LRNCM. 展开更多
关键词 surface modification li-rich cathode material electrochemical performance li_(1.4)Al_(0.4)Ti_(1.6)(Po_(4))_(3) li_(1.2)ni_(0.13)Co_(0.13)mn_(0.54)o_(2) li-ion batteries
下载PDF
高容量无钴富锂锰Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)正极材料的制备
5
作者 陈燕彬 王红亮 +1 位作者 罗燕 涂文 《金属材料与冶金工程》 CAS 2023年第4期16-21,共6页
低钴、无钴化正极材料具有低成本、改善电池性能、缓解钴资源紧张的优势,可适应未来高性能低成本锂离子电池发展需求。本文研究如何制备高容量无钴富锂锰Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)正极材料,探究反应pH值、络合剂、加料方式、陈化... 低钴、无钴化正极材料具有低成本、改善电池性能、缓解钴资源紧张的优势,可适应未来高性能低成本锂离子电池发展需求。本文研究如何制备高容量无钴富锂锰Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)正极材料,探究反应pH值、络合剂、加料方式、陈化时间对前驱体制备的影响,以及合成阶段温度对Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)正极材料的影响。实验结果表明,前驱体制备的优化条件为:pH为11、络合剂氨水浓度为0.5mol/L、加料方式为“部分氨水调底液pH为11,部分氨水调金属盐溶液pH为7,剩余氨水与金属盐溶液、沉淀剂并流加入”的加料方式、陈化时间为8h。合成Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)正极材料最佳温度为950℃。优化条件制备的Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)正极材料在0.2C,2.0~4.8V条件下获得了347.2mA·h/g的高容量,放电效率78.6%,10次循环容量保持率98.3%,显示了较好的电性能。 展开更多
关键词 无钴 富锂锰正极材料(li_(1.2)mn_(0.6)ni_(0.2)o_(2)) 前驱体
原文传递
通过络合法实现锰基前驱体的可控制备 被引量:1
6
作者 涂文 《湖南有色金属》 CAS 2022年第6期52-55,共4页
文章主要就氨比对富锂正极材料Li_(1.2)Mn_(0.6)Ni_(0.2)O_(2)的前驱体制备及其成品性能的影响进行了研究,指出氨水作为络合剂,有利于锰基前驱体形成规则形貌,从而使成品性能更优。
关键词 富锂正极材料(li_(1.2)mn_(0.6)ni_(0.2)o_(2)) 氨水 共沉淀
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部