期刊文献+
共找到425篇文章
< 1 2 22 >
每页显示 20 50 100
NbN quantum dots anchored hollow carbon nanorods as efficient polysulfide immobilizer and lithium stabilizer for Li-S full batteries
1
作者 Fei Ma Zhuo Chen +9 位作者 Katam Srinivas Ziheng Zhang Yu Wu Dawei Liu Hesheng Yu Yue Wang Xinsheng Li Ming-qiang Zhu Qi Wu Yuanfu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期260-271,I0007,共13页
The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispers... The shuttle effect of lithium polysulfides(LiPSs)and uncontrollable lithium dendrite growth seriously hinder the practical application of lithium-sulfur(Li-S)batteries.To simultaneously address such issues,monodispersed Nb N quantum dots anchored on nitrogen-doped hollow carbon nanorods(NbN@NHCR)are elaborately developed as efficient Li PSs immobilizer and Li stabilizer for high-performance Li-S full batteries.Density functional theory(DFT)calculations and experimental characterizations demonstrate that the sulfiphilic and lithiophilic NbN@NHCR hybrid can not only efficiently immobilize the soluble Li PSs and facilitate diffusion-conversion kinetics for alleviating the shuttling effect,but also homogenize the distribution of Li+ions and regulate uniform Li deposition for suppressing Li-dendrite growth.As a result,the assembled Li-S full batteries(NbN@NHCR-S||Nb N@NHCR-Li)deliver excellent long-term cycling stability with a low decay rate of 0.031%per cycle over 1000 cycles at high rate of 2 C.Even at a high S loading of 5.8 mg cm^(-2)and a low electrolyte/sulfur ratio of 5.2μL mg^(-1),a large areal capacity of 6.2 mA h cm^(-2)can be achieved in Li-S pouch cell at 0.1 C.This study provides a new perspective via designing a dual-functional sulfiphilic and lithiophilic hybrid to address serious issues of the shuttle effect of S cathode and dendrite growth of Li anode. 展开更多
关键词 Dual-functional host NbN quantum dots Shuttle effect Dendrite-free Li anode li-s full batteries
下载PDF
Phosphorylated cellulose nanofibers establishing reliable ion-sieving barriers for durable lithium-sulfur batteries
2
作者 Zihao Li Pengsen Qian +3 位作者 Hongyang Li He Xiao Jun Chen Gaoran Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期619-628,共10页
The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineer... The shuttle effect is among the most characteristic and formidable challenges in the pursuit of high-performance lithium-sulfur(Li-S)batteries.Herein,phosphorylated cellulose nanofibers(pCNF)are intentionally engineered to establish an ion-sieving barrier against polysulfide shuttling and thereby improve battery performance.The phosphorylation,involving the grafting of phosphate groups onto the cellulose backbone,imparts an exceptional electronegativity that repels the polysulfide anions from penetrating through the separator.Moreover,the electrolyte wettability and Li^(+)transfer can be significantly promoted by the polar nature of pCNF and the facile Li^(+)disassociation.As such,rational ion management is realized,contributing to enhanced reversibility in both sulfur and lithium electrochemistry.As a result,Li-S cells equipped with the self-standing pCNF separator demonstrate outstanding long-term cyclability with a minimum fading rate of 0.013%per cycle over 1000 cycles at 1 C,and a decent areal capacity of 5.37 mA h cm^(-2) even under elevated sulfur loading of 5.0 mg cm^(-2) and limited electrolyte of 6.0 mL g^(-1).This work provides a facile and effective pathway toward the well-tamed shuttle effect and highly durable Li-S batteries. 展开更多
关键词 lithium-sulfur batteries Cellulose Phosphorylation Ion-sieving Shuttle effect
下载PDF
Flame-retardant ammonium polyphosphate/MXene decorated carbon foam materials as polysulfide traps for fire-safe and stable lithium-sulfur batteries
3
作者 Yang Li Yong-Cheng Zhu +5 位作者 Sowjanya Vallem Man Li Seunghyun Song Tao Chen Long-Cheng Tang Joonho Bae 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期313-323,I0008,共12页
Lithium-sulfur(Li-S)batteries are one of the most promising modern-day energy supply systems because of their high theoretical energy density and low cost.However,the development of high-energy density Li-S batteries ... Lithium-sulfur(Li-S)batteries are one of the most promising modern-day energy supply systems because of their high theoretical energy density and low cost.However,the development of high-energy density Li-S batteries with high loading of flammable sulfur faces the challenges of electrochemical performance degradation owing to the shuttle effect and safety issues related to fire or explosion accidents.In this work,we report a three-dimensional(3D)conductive nitrogen-doped carbon foam supported electrostatic self-assembled MXene-ammonium polyphosphate(NCF-MXene-APP)layer as a heat-resistant,thermally-insulated,flame-retardant,and freestanding host for Li-S batteries with a facile and costeffective synthesis method.Consequently,through the use of NCF-MXene-APP hosts that strongly anchor polysulfides,the Li-S batteries demonstrate outstanding electrochemical properties,including a high initial discharge capacity of 1191.6 mA h g^(-1),excellent rate capacity of 755.0 mA h g^(-1)at 1 C,and long-term cycling stability with an extremely low-capacity decay rate of 0.12%per cycle at 2 C.More importantly,these batteries can continue to operate reliably under high temperature or flame attack conditions.Thus,this study provides valuable insights into the design of safe high-performance Li-S batteries. 展开更多
关键词 FLAME-RETARDANT MXene Ammonium polyphosphate Safety lithium-sulfur battery
下载PDF
Concurrent hetero-/homo-geneous electrocatalysts to bi-phasically mediate sulfur species for lithium-sulfur batteries
4
作者 Rui-Bo LingHu Jin-Xiu Chen +6 位作者 Jin-Hao Zhang Bo-Quan Li Qing-Shan Fu Gulnur Kalimuldina Geng-Zhi Sun Yunhu Han Long Kong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期663-668,I0016,共7页
Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batter... Expediting redox kinetics of sulfur species on conductive scaffolds with limited charge accessible surface is considered as an imperative approach to realize energy-dense and power-intensive lithium-sulfur(Li-S)batteries.In this work,the concept of concurrent hetero-/homo-geneous electrocatalysts is proposed to simultaneously mediate liquid-solid conversion of lithium polysulfides(LiPSs)and solid lithium disulfide/sulfide(Li_(2)S_(2)/Li_(2)S)propagation,the latter of which suffers from sluggish reduction kinetics due to buried conductive scaffold surface by extensive deposition of Li_(2)S_(2)/Li_(2)S.The selected model material to verify this concept is a two-in-one catalyst:carbon nanotube(CNT)scaffold supported iron-cobalt(Fe-Co)alloy nanoparticles and partially carbonized selenium(C-Se)component.The Fe-Co alloy serves as a heterogeneous electrocatalyst to seed Li_(2)S_(2)/Li_(2)S through sulphifilic active sites,while the C-Se sustainably releases soluble lithium polyselenides and functions as a homogeneous electrocatalyst to propagate Li_(2)S_(2)/Li_(2)S via solution pathways.Such bi-phasic mediation of the sulfur species benefits reduction kinetics of LiPS conversion,especially for the massive Li_(2)S_(2)/Li_(2)S growth scenario by affording an additional solution directed route in case of conductive surface being largely buried.This strategy endows the Li-S batteries with improved cycling stability(836 mA h g^(-1)after 180 cycles),rate capability(547 mA h g^(-1)at 4 C)and high sulfur loading superiority(2.96 mA h cm^(-2)at 2.4 mg cm^(-2)).This work hopes to enlighten the employment of bi-phasic electrocatalysts to dictate liquid-solid transformation of intermediates for conversion chemistry batteries. 展开更多
关键词 lithium-sulfur batteries Electrocatalysis Lithium polysulfides Sulfur cathode Energy density
下载PDF
Li intercalation in an MoSe_(2) electrocatalyst:In situ observation and modulation of its precisely controllable phase engineering for a high-performance flexible Li-S battery 被引量:3
5
作者 Yunke Wang Yige Zhao +5 位作者 Kangli Liu Shaobin Wang Neng Li Guosheng Shao Feng Wang Peng Zhang 《Carbon Energy》 SCIE CSCD 2023年第2期201-215,共15页
Sophisticated efficient electrocatalysts are essential to rectifying the shuttle effect and realizing the high performance of flexible lithium-sulfur batteries(LSBs).Phase transformation of MoSe_(2) from the 2H phase ... Sophisticated efficient electrocatalysts are essential to rectifying the shuttle effect and realizing the high performance of flexible lithium-sulfur batteries(LSBs).Phase transformation of MoSe_(2) from the 2H phase to the 1T phase has been proven to be a significant method to improve the catalytic activity.However,precisely controllable phase engineering of MoSe_(2) has rarely been reported.Herein,by in situ Li ions intercalation in MoSe_(2),a precisely controllable phase evolution from 2H-MoSe_(2) to 1T-MoSe_(2) was realized.More importantly,the definite functional relationship between cut-off voltage and phase structure was first identified for phase engineering through in situ observation and modulation methods.The sulfur host(CNFs/1T-MoSe_(2))presents high charge density,strong polysulfides adsorption,and catalytic kinetics.Moreover,Li-S cells based on it display capacity retention of 875.3mAh g^(-1) after 500 cycles at 1 C and an areal capacity of 8.71mAh cm^(-2) even at a high sulfur loading of 8.47mg cm^(-2).Furthermore,the flexible pouch cell exhibiting decent performance will endow a promising potential in the wearable energy storage field.This study proposes an effective strategy to precisely control the phase structure of MoSe_(2),which may provide the reference to fabricate the highly efficient electrocatalysts for LSBs and other energy systems. 展开更多
关键词 ELECTROCATALYSTS ELECTROSPINNING Li intercalation lithium-sulfur batteries phase engineering
下载PDF
Tungsten oxide/nitrogen-doped carbon nanotubes composite catalysts for enhanced redox kinetics in lithium-sulfur batteries
6
作者 Deqing He Zihao Xie +2 位作者 Qian Yang Wei Wang Chao Su 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期58-67,共10页
The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(... The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion. 展开更多
关键词 li-s batteries Composites Ion diffusion channels 3D electron transport network Redox kinetics
下载PDF
Tuning the crystalline and electronic structure of ZrO_(2)via oxygen vacancies and nano-structuring for polysulfides conversion in lithium-sulfur batteries
7
作者 Shengnan Fu Chaowei Hu +5 位作者 Jing Li Hongtao Cui Yuanyuan Liu Kaihua Liu Yanzhao Yang Meiri Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期82-93,I0003,共13页
The recent emergence of tetragonal phases zirconium dioxide(ZrO_(2))with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfid... The recent emergence of tetragonal phases zirconium dioxide(ZrO_(2))with vacancies has generated significant interest as a highly efficient and stable electrocatalyst with potential applications in trapping polysulfides and facilitating rapid conversion in lithium-sulfur batteries(LSBs).However,the reduction of ZrO_(2)is challenging,even under strong reducing atmospheres at high temperatures and pressures.Consequently,the limited presence of oxygen vacancies results in insufficient active sites and reaction interfaces,thereby hindering practical implementation.Herein,we successfully introduced abundant oxygen vacancies into ZrO_(2)at the nanoscale with the help of carbon nanotubes(CNTs-OH)through hydrogen-etching at lower temperatures and pressures.The introduced oxygen vacancies on ZrO_(2-x)/CNTs-OH can effectively rearrange charge distribution,enhance sulfiphilicity and increase active sites,contributing to high ionic and electronic transfer kinetics,strong binding energy and low redox barriers between polysulfides and ZrO_(2-x).These findings have been experimentally validated and supported by theory calculations.As a result,LSBs assembled with the ZrO_(2-x)/CNTs-OH modified separators demonstrate excellent rate performance,superior cycling stability,and ultra-high sulfur utilization.Especially,at high sulfur loading of 6 mg cm^(-2),the area capacity is still up to 6.3 mA h cm^(-2).This work provides valuable insights into the structural and functional optimization of electrocatalysts for batteries. 展开更多
关键词 lithium-sulfur batteries Oxygen vacancies Zirconium dioxide/carbon nanotubes with–OH Improved redox kinetics Superior cycling stability
下载PDF
Advanced preparation and application of bimetallic materials in lithium-sulfur batteries:A review
8
作者 Yongbing Jin Nanping Deng +4 位作者 Yanan Li Hao Wang Meiling Zhang Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期469-512,I0011,共45页
Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natu... Lithium-sulfur(Li-S)batteries are considered highly promising as next-generation energy storage systems due to high theoretical capacity(2600 Wh kg^(-1))and energy density(1675 mA h g^(-1))as well as the abundant natural reserves,low cost of elemental sulfur,and environmentally friendly properties.However,several challenges impede its commercialization including low conductivity of sulfur itself,the severe“shuttle effect”caused by lithium polysulfides(LiPSs)during charge–discharge processes,volume expansion effects and sluggish reaction kinetics.As a solution,polar metal particles and their compounds have been introduced as the main hosts for sulfur cathode due to their robust catalytic activity and adsorption capability,effectively suppressing the“shuttle effect”of Li PSs.Bimetallic alloys and their compounds with multi-functional properties exhibit remarkable electrochemical performance more readily when compared to single-metal materials.Well-designed bimetallic materials demonstrate larger specific surface areas and richer active sites,enabling simultaneous high adsorption capability and strong catalytic properties.The synergistic effect of the“adsorption-catalysis”sites accelerates the adsorptiondiffusion-conversion process of Li PSs,ultimately achieving a long-lasting Li-S battery.Herein,the latest progress and performance of bimetallic materials in cathodes,separators,and interlayers of Li-S batteries are systematically reviewed.Firstly,the principles and challenges of Li-S batteries are briefly analyzed.Then,various mechanisms for suppressing“shuttle effects”of Li PSs are emphasized at the microscale.Subsequently,the performance parameters of various bimetallic materials are comprehensively summarized,and some improvement strategies are proposed based on these findings.Finally,the future prospects of bimetallic materials are discussed,with the hope of providing profound insights for the rational design and manufacturing of high-performance bimetallic materials for LSBs. 展开更多
关键词 Bimetallic materials lithium-sulfur batteries Effectively suppress shuttle effect of LiPSs Significantly improve reaction kinetics Exceptionally long lifespan
下载PDF
Design,preparation,application of advanced array structured materials and their action mechanism analyses for high performance lithium-sulfur batteries
9
作者 Nanping Deng Xiaofan Feng +7 位作者 Yongbing Jin Zhaozhao Peng Yang Feng Ying Tian Yong Liu Lu Gao Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期266-303,I0007,共39页
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme... Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB. 展开更多
关键词 Array structured materials Preparation methods and structural designs Action mechanism analyses Advanced li-s batteries Excellent electrochemical performances and safety
下载PDF
VSe_(2)/V_(2)C heterocatalyst with built-in electric field for efficient lithium-sulfur batteries:Remedies polysulfide shuttle and conversion kinetics
10
作者 Yanwei Lv Lina Bai +7 位作者 Qi Jin Siyu Deng Xinzhi Ma Fengfeng Han Juan Wang Lirong Zhang Lili Wu Xitian Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期397-409,I0010,共14页
Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriou... Lithium sulfur(Li-S)battery is a kind of burgeoning energy storage system with high energy density.However,the electrolyte-soluble intermediate lithium polysulfides(Li PSs)undergo notorious shuttle effect,which seriously hinders the commercialization of Li-S batteries.Herein,a unique VSe_(2)/V_(2)C heterostructure with local built-in electric field was rationally engineered from V_(2)C parent via a facile thermal selenization process.It exquisitely synergizes the strong affinity of V_(2)C with the effective electrocatalytic activity of VSe_(2).More importantly,the local built-in electric field at the heterointerface can sufficiently promote the electron/ion transport ability and eventually boost the conversion kinetics of sulfur species.The Li-S battery equipped with VSe_(2)/V_(2)C-CNTs-PP separator achieved an outstanding initial specific capacity of 1439.1 m A h g^(-1)with a high capacity retention of 73%after 100 cycles at0.1 C.More impressively,a wonderful capacity of 571.6 mA h g^(-1)was effectively maintained after 600cycles at 2 C with a capacity decay rate of 0.07%.Even under a sulfur loading of 4.8 mg cm^(-2),areal capacity still can be up to 5.6 m A h cm^(-2).In-situ Raman tests explicitly illustrate the effectiveness of VSe_(2)/V_(2)C-CNTs modifier in restricting Li PSs shuttle.Combined with density functional theory calculations,the underlying mechanism of VSe_(2)/V_(2)C heterostructure for remedying Li PSs shuttling and conversion kinetics was deciphered.The strategy of constructing VSe_(2)/V_(2)C heterocatalyst in this work proposes a universal protocol to design metal selenide-based separator modifier for Li-S battery.Besides,it opens an efficient avenue for the separator engineering of Li-S batteries. 展开更多
关键词 li-s battery Shuttle effect Separator modifier VSe_(2)/V_(2)C heterostructure Built-in electric field
下载PDF
Anchoring polysulfide with artificial solid electrolyte interphase for dendrite-free and low N/P ratio Li-S batteries 被引量:1
11
作者 Wei Lu Zhao Wang +7 位作者 Guiru Sun Shumin Zhang Lina Cong Lin Lin Siru Chen Jia Liu Haiming Xie Yulong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期32-39,I0002,共9页
Lithium sulfur batteries are regarded as a promising candidate for high-energy-density energy storage devices.However,the lithium metal anode in lithium-sulfur batteries encounters the problem of lithium dendrites and... Lithium sulfur batteries are regarded as a promising candidate for high-energy-density energy storage devices.However,the lithium metal anode in lithium-sulfur batteries encounters the problem of lithium dendrites and lithium metal consumption caused by polysulfide corrosion.Herein we design a dualfunction PMMA/PPC/LiNO3composite as an artificial solid electrolyte interphase(PMCN-SEI)to protect Li metal anode.This SEI offers multiple sites of C=O for polysulfide anchoring to constrain corrosion of Li metal anode.The lithiated polymer group and Li3N in PMCN-SEI can homogenize lithium-ion deposition behavior to achieve a dendrite-free anode.As a result,the PMCN-SEI protected Li metal anode enables the Li||Li symmetric batteries to maintain over 300 cycles(1300 h)at a capacity of 5 m Ah cm^(-2),corresponding to a cumulative capacity of 3.25 Ah cm^(-2).Moreover,Li-S batteries assembled with 20μm of Li metal anode(N/P=1.67)still deliver an initial capacity of 1166 m A h g-1at 0.5C.Hence,introducing polycarbonate polymer/inorganic composite SEI on Li provides a new solution for achieving the high energy density of Li-S batteries. 展开更多
关键词 Thin Limetal anode Solid electrolyte interphase(SEI) lithium-sulfur(li-s)batteries Polymer/inorganic composite POLYCARBONATE
下载PDF
Three-in-one LaNiO_(3) functionalized separator boosting electrochemical stability and redox kinetics for high-performance Li-S battery 被引量:1
12
作者 Weiyu Wang Mingxiu Hou +6 位作者 Fangqian Han Di Yu Jie Liu Qian Zhang Fengli Yu Lei Wang Maoshuai He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第7期581-591,I0013,共12页
The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfide... The lithium-sulfur(Li-S)battery,as one of the energy storage devices,has been in the limelight due to its high theoretical energy density.However,the poor redox kinetics and the"shuttle effect"of polysulfides severely restrict the use of Li-S batteries in practical applications.Herein,a novel bimetallic LaNiO_(3) functional material with high electrical conductivity and catalytic property is prepared to act as a high-efficiency polysulfide shuttling stopper.The three LaNiO_(3) samples with different physical/chemical characteristics are obtained by controlling the calcination temperature.In conjunction with the high electrical conductivity and excellent catalytic properties of the as-prepared materials,the appropriate chemisorption toward polysulfides offers great potential to enhance electrochemical stability for highperformance Li-S batteries.Particularly,the Li-S cell with the separator modified by such functional material gives a specific capacity of 658 mA h g^(-1) after 500 cycles at a high current density of 2 C.Even with high sulfur loading of 6.05 mg cm^(-2),the Li-S battery still exhibits an areal specific capacity of 2.81 m A h cm^(-2)after 150 cycles.This work paves a new avenue for the rational design of materials for separator modification in high-performance Li-S batteries. 展开更多
关键词 li-s battery Functional separator Catalytic property Electrochemical stability Redox kinetics
下载PDF
Towards Practical Application of Li-S Battery with High Sulfur Loading and Lean Electrolyte:Will Carbon-Based Hosts Win This Race? 被引量:1
13
作者 Yi Gong Jing Li +7 位作者 Kai Yang Shaoyin Li Ming Xu Guangpeng Zhang Yan Shi Qiong Cai Huanxin Li Yunlong Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期384-422,共39页
As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density com... As the need for high-energy–density batteries continues to grow, lithium-sulfur(Li–S) batteries have become a highly promising next-generation energy solution due to their low cost and exceptional energy density compared to commercially available Li-ion batteries. Research into carbon-based sulfur hosts for Li–S batteries has been ongoing for over two decades, leading to a significant number of publications and patents.However, the commercialization of Li–S batteries has yet to be realized. This can be attributed, in part, to the instability of the Li metal anode. However, even when considering just the cathode side, there is still no consensus on whether carbon-based hosts will prove to be the best sulfur hosts for the industrialization of Li–S batteries. Recently, there has been controversy surrounding the use of carbon-based materials as the ideal sulfur hosts for practical applications of Li–S batteries under high sulfur loading and lean electrolyte conditions. To address this question, it is important to review the results of research into carbon-based hosts, assess their strengths and weaknesses, and provide a clear perspective. This review systematically evaluates the merits and mechanisms of various strategies for developing carbon-based host materials for high sulfur loading and lean electrolyte conditions. The review covers structural design and functional optimization strategies in detail, providing a comprehensive understanding of the development of sulfur hosts. The review also describes the use of efficient machine learning methods for investigating Li–S batteries. Finally, the outlook section lists and discusses current trends, challenges, and uncertainties surrounding carbon-based hosts, and concludes by presenting our standpoint and perspective on the subject. 展开更多
关键词 li-s batteries Carbon materials Structural design Functional modification Machine learning
下载PDF
Dual-Functional Lithiophilic/Sulfiphilic Binary-Metal Selenide Quantum Dots Toward High-Performance Li-S Full Batteries 被引量:2
14
作者 Youzhang Huang Liang Lin +6 位作者 Yinggan Zhang Lie Liu Baisheng Sa Jie Lin Laisen Wang Dong-Liang Peng Qingshui Xie 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期169-186,共18页
The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,... The commercial viability of lithium-sulfur batteries is still challenged by the notorious lithium polysulfides(Li PSs)shuttle effect on the sulfur cathode and uncontrollable Li dendrites growth on the Li anode.Herein,a bi-service host with Co-Fe binary-metal selenide quantum dots embedded in three-dimensional inverse opal structured nitrogen-doped carbon skeleton(3DIO FCSe-QDs@NC)is elaborately designed for both sulfur cathode and Li metal anode.The highly dispersed FCSe-QDs with superb adsorptive-catalytic properties can effectively immobilize the soluble Li PSs and improve diffusion-conversion kinetics to mitigate the polysulfide-shutting behaviors.Simultaneously,the 3D-ordered porous networks integrated with abundant lithophilic sites can accomplish uniform Li deposition and homogeneous Li-ion flux for suppressing the growth of dendrites.Taking advantage of these merits,the assembled Li-S full batteries with 3DIO FCSe-QDs@NC host exhibit excellent rate performance and stable cycling ability(a low decay rate of 0.014%over 2,000 cycles at 2C).Remarkably,a promising areal capacity of 8.41 mAh cm^(-2)can be achieved at the sulfur loading up to 8.50 mg cm^(-2)with an ultra-low electrolyte/sulfur ratio of 4.1μL mg^(-1).This work paves the bi-serve host design from systematic experimental and theoretical analysis,which provides a viable avenue to solve the challenges of both sulfur and Li electrodes for practical Li-S full batteries. 展开更多
关键词 Dual-functional host Fe_(2)CoSe_(4)quantum dots Shuttle effect Dendrite-free Li anode li-s full batteries
下载PDF
Propelling polysulfide redox by Fe_(3)C-FeN heterostructure@nitrogendoped carbon framework towards high-efficiency Li-S batteries 被引量:1
15
作者 Mengdi Zhang Jiawei Mu +8 位作者 Yanan Li Yuanyuan Pan Zhiliang Dong Bei Chen Shiwei Guo Wenhan Yuan Haiqiu Fang Han Hu Mingbo Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期105-114,I0004,共11页
Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical i... Lithium-sulfur(Li-S) batteries hold great promise in next-generation high-energy-density energy storage systems,but the intractable shuttle effect and the sluggish redox kinetics of polysulfides hinder the practical implementation of Li-S batteries.Here,heterostructured Fe_(3)C-FeN nanoparticles dotted in the threedimensional-ordered nitrogen-doped carbon framework(Fe_(3)C-FeN@NCF) were synthesized by molecular engineering combined with heterointerface engineering,and were applied to regulate the immobilization-diffusion-conversion behavior of polar polysulfides.It is experimentally and theoretically demonstrated that the heterointerface between Fe_(3)C and FeN exhibits high sulfiphilicity and high electronic/ionic conductivity,thus effectively capturing polysulfides and accelerating the bidirectional conversion of sulfur species.Meanwhile,the holey carbon framework functions as the scaffold to highly disperse binary nanoparticles,ensuring the sufficient exposure of active sites and the easy accessibility for lithium ions and electrons.By virtue of these synergistic merits,the Li-S batteries based on Fe_(3)CFeN@NCF-modified separators afford excellent electrochemical performances including a high rate capacity of 858 mA h g^(-1)at 2 C and a low capacity decay rate of 0.07% per cycle after 800 cycles at 1C This work provides inspiration for the design of heterostructured compounds and sheds light on the potential of heterostructure in high-efficiency Li-S batteries. 展开更多
关键词 lithium-sulfur batteries Separator modification Heterostructured catalysts Carbon composites Shuttle effect
下载PDF
Isolated diatomic Zn-Co metal–nitrogen/oxygen sites with synergistic effect on fast catalytic kinetics of sulfur species in Li-S battery 被引量:1
16
作者 Chun-Lei Song Qiao-Tong He +7 位作者 Zhongyi Zeng Jing-Yan Chen Tian Wen Yu-Xiao Huang Liu-Chun Zhuang Wei Yi Yue-Peng Cai Xu-Jia Hong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期505-514,共10页
Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield ... Lithium-sulfur batteries are severely restricted by low electronic conductivity of sulfur and Li_(2)S,shuttle effect,and slow conversion reaction of lithium polysulfides(LiPSs).Herein,we report a facile and highyield strategy for synthesizing dual-core single-atom catalyst(ZnCoN_(4)O_(2)/CN)with atomically dispersed nitrogen/oxygen-coordinated Zn-Co sites on carbon nanosheets.Based on density functional theory(DFT)calculations and LiPSs conversion catalytic ability,ZnCoN_(4)O_(2)/CN provides dual-atom sites of Zn and Co,which could facilitate Li^(+)transport and Li_(2)S diffusion,and catalyze LiPSs conversion more effectively than homonuclear bimetallic single-atom catalysts or their simple mixture and previously reported singleatom catalysts.Li-S cell with ZnCoN_(4)O_(2)/CN modified separator showed excellent rate performance(789.4 mA h g^(-1)at 5 C)and stable long cycle performance(0.05%capacity decay rate at 6C with 1000cycles,outperforming currently reported single atomic catalysts for LiPSs conversion.This work highlights the important role of metal active centers and provides a strategy for producing multifunctional dual-core single atom catalysts for high-performance Li-S cells. 展开更多
关键词 Dual-core single-atom catalysts Lithium polysulfides Fast catalytic kinetics Li_(2)S diffusion li-s battery
下载PDF
Butyl ether as Co-diluent in medium-concentrated electrolyte for Li-S battery
17
作者 Xirui Kong Yayun Zheng +2 位作者 Lang He Du Wang Yan Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第10期343-347,I0010,共6页
1. Introduction The Lithium-sulfur battery(LSB) shows promise as a highdensity energy source, with a theoretical energy density of approximately 2600 W h kg^(-1)[1]. However, practical application of the LSB has been ... 1. Introduction The Lithium-sulfur battery(LSB) shows promise as a highdensity energy source, with a theoretical energy density of approximately 2600 W h kg^(-1)[1]. However, practical application of the LSB has been hindered by the “shuttle effect” and Li anode corrosion [2,3]. Highly concentrated electrolytes(HCEs) have been proposed as a solution, as they can inhibit the dissolution of lithium polysulfide and promote homogeneous lithium deposition [4]. 展开更多
关键词 lithium-sulfur battery Diluted electrolyte Butyl ether Co-diluent
下载PDF
Tuning dual-atom mediator toward high-rate bidirectional polysulfide conversion in Li-S batteries
18
作者 Yifan Ding Zhongti Sun +8 位作者 Jianghua Wu Tianran Yan Lin Shen Zixiong Shi Yuhan Wu Xiaoqing Pan Liang Zhang Qiang Zhang Jingyu Sun 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期462-472,I0012,共12页
An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric disp... An emerging practice in the realm of Li-S batteries lies in the employment of single-atom catalysts(SACs)as effective mediators to promote polysulfide conversion,but monometallic SACs affording isolated geometric dispersion and sole electronic configuration limit the catalytic benefits and curtail the cell performance.Here,we propose a class of dual-atom catalytic moieties comprising hetero-or homo-atomic pairs anchored on N-doped graphene(NG)to unlock the liquid–solid redox puzzle of sulfur,readily realizing Li-S full cell under high-rate-charging conditions.As for Fe-Ni-NG,in-depth experimental and theoretical analysis reveal that the hetero-atomic orbital coupling leads to altered energy levels,unique electronic structures,and varied Fe oxidation states in comparison with homo-atomic structures(FeFe-NG or Ni-Ni-NG).This would weaken the bonding energy of polysulfide intermediates and thus enable facile electrochemical kinetics to gain rapid liquid-solid Li_(2)S_(4)?Li_(2)S conversion.Encouragingly,a Li-S battery based on the S@Fe-Ni-NG cathode demonstrates unprecedented fast-charging capability,documenting impressive rate performance(542.7 mA h g^(-1)at 10.0 C)and favorable cyclic stability(a capacity decay of 0.016%per cycle over 3000 cycles at 10.0 C).This finding offers insights to the rational design and application of dual-atom mediators for Li-S batteries. 展开更多
关键词 li-s batteries Reaction kinetics Dual-atom Rate-determining step High-rate performance
下载PDF
Manufacturing N,O-carboxymethyl chitosan-reduced graphene oxide under freeze-dying for performance improvement of Li-S battery
19
作者 Zhibin Jiang Lujie Jin +8 位作者 Xiying Jian Jinxia Huang Hongshuai Wang Binhong Wu Kang Wang Ling Chen Youyong Li Xiang Liu Weishan Li 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期282-305,共24页
Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle ... Lithium-sulfur(Li-S) batteries can provide far higher energy density than currently commercialized lithium ion batteries, but challenges remain before it they are used in practice.One of the challenges is the shuttle effect that originates from soluble intermediates, like lithium polysulfides. To address this issue, we report a novel laminar composite, N,O-carboxymethyl chitosan-reduced graphene oxide(CC-rGO), which is manufactured via the self-assembly of CC onto GO and subsequent reduction of GO under an extreme condition of 1 Pa and-50°C. The synthesized laminar CC-rGO composite is mixed with acetylene black(AB) and coated on a commercial polypropylene(PP) membrane, resulting in a separator(CC-rGO/AB/PP) that can not only completely suppress the polysulfides penetration, but also can accelerate the lithium ion transportation, providing a Li-S battery with excellent cyclic stability and rate capability. As confirmed by theoretic simulations, this unique feature of CC-rGO is attributed to its strong repulsive interaction to polysulfide anions and its benefit for fast lithium ion transportation through the paths paved by the heteroatoms in CC. 展开更多
关键词 composite manufacturing N O-carboxymethyl chitosan reduced graphene oxide SEPARATOR lithium-sulfur battery
下载PDF
A semi-immobilized sulfur-rich copolymer backbone with conciliatory polymer skeleton and conductive substrates for high-performance Li-S batteries
20
作者 Tianpeng Zhang Zihui Song +6 位作者 Jinfeng Zhang Wanyuan Jiang Runyue Mao Borui Li Siyang Liu Xigao Jian Fangyuan Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期510-518,I0012,共10页
Sulfur-rich polymers have gained a great deal of attention as the next-generation active materials in lithium-sulfur(Li-S)batteries due to their low cost,environmental compatibility,naturally sulfur uniform dispersion... Sulfur-rich polymers have gained a great deal of attention as the next-generation active materials in lithium-sulfur(Li-S)batteries due to their low cost,environmental compatibility,naturally sulfur uniform dispersion,and distinctive structure covalently bonding with sulfur atoms.However,the poor electrical conductivity and undesirable additional shuttle effect still hinder the commercial application of sulfur-rich polymers.Herein,we report a flexible semi-immobilization strategy to prepare allylterminated hyperbranched poly(ethyleneimine)-functionalized reduced graphene oxide(A-PEI-EGO)as sulfur-rich copolymer backbone.The semi-immobilization strategy can effectively reconcile the demand for polymer skeleton and conductive substrates through forming quaternary ammonium groups and reducing oxygen-containing functional groups,resulting in enhanced skeleton adsorption capacity and substrate electronic conductivity,respectively.Furthermore,the stable covalent bonding connection based on polymer molecules(A-PEI)not only completely prevents the additional shuttle effect of lithiation organic molecules and even sulfur-rich oligomers,but provides more inverse vulcanization active sites.As a result,the as-prepared A-PEI-EGO-S cathodes display an initial discharge capacity of1338 m A h g^(-1)at a rate of 0.1 C and an outstanding cycling stability of 0.046%capacity decay per cycle over 600 cycles.Even under 6.2 mg cm^(-2)S-loaded and sparing electrolyte of 6μL mg^(-1),the A-PEI-EGO-S cathode can also achieve a superior cycling performance of 98%capacity retention after 60 cycles,confirming its application potential. 展开更多
关键词 li-s batteries Sulfur-rich polymers Semi-immobilization strategy Demand reconciliation Outstanding cycling stability
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部