The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, fle...The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states.展开更多
Rapid development of flexible electronic devices is promoting the design of flexible energy-storage devices. Lithium-sulfur (Li-S) batteries are considered as promising candidates for high energy density energy-stor...Rapid development of flexible electronic devices is promoting the design of flexible energy-storage devices. Lithium-sulfur (Li-S) batteries are considered as promising candidates for high energy density energy-storage devices. Therefore, flexible Li-S batteries are desired. In this study, we fabricated composite films of freestanding reduced graphene oxide nanotubes wrapped sulfur nanoparticles (RGONTs@S) by pressing RGONTs@S composite foams, which were synthesized by combining cold quenching with freeze-drying and a subsequent reduction process. These RGONTs@S composite films can serve as self-supporting cathodes for Li-S batteries without additional binders and conductive agents. Their interconnected tubular structure allows easy electron transport throughout the network and helps to confine the polysulfides produced during the charge/ discharge process. As a result, the RGONTs@S composite films exhibited a high initial specific capacity, remarkable cycling stabilit36 and excellent rate capability. More importantly, the RGONTs@S composite films can serve as electrodes in flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled using these electrodes and they displayed stable electrochemical performance at different bending states.展开更多
In recent years,the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices.Flexible lithium-ion batteries(FLIBs)have emerged as the most at...In recent years,the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices.Flexible lithium-ion batteries(FLIBs)have emerged as the most attractive and versatile flexible electronic storage devices available.Carbon nanotubes(CNTs)are hollow-structured tubular nanomaterials with high electrical conductivity,large specific surface area,and excellent mechanical properties.Graphene(G)is to some extent comparable to CNTs,because both have unlimited value in flexible electrodes.Herein,a systematic summary of the application of CNT and G in FLIBs electrodes is presented,including different functional applications and services at different temperatures.Furthermore,the effects of electrode structures,including powder,wire-shaped,and film-shaped structures,on electrochemical properties is highlighted.The assembly structures of the FLIBs consisting of CNT and G-based flexible electrodes to realize different functions,including bendability,stretchability,foldability,self-healing,and self-detecting,are systematically reviewed.The current challenges and development prospects of flexible CNT and G-based flexible electrodes and corresponding FLIBs are discussed.展开更多
Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of g...Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.展开更多
We investigated herein the morphological,structural,and electrochemical features of electrodes using a sulfur(S)-super P carbon(SPC)composite(i.e.,S@SPC-73),and including few-layer graphene(FLG),multiwalled carbon nan...We investigated herein the morphological,structural,and electrochemical features of electrodes using a sulfur(S)-super P carbon(SPC)composite(i.e.,S@SPC-73),and including few-layer graphene(FLG),multiwalled carbon nanotubes(MWCNTs),or a mixture of them within the current collector design.Furthermore,we studied the effect of two different electron-conducting agents,that is,SPC and FLG,used in the slurry for the electrode preparation.The supports have high structural crystallinity,while their morphologies are dependent on the type of material used.Cyclic voltammetry(CV)shows a reversible and stable conversion reaction between Li and S with an activation process upon the first cycle leading to the decrease of cell polarization.This activation process is verified by electrochemical impedance spectroscopy(EIS)with a decrease of the resistance after the first CV scan.Furthermore,CV at increasing scan rates indicates a Li+diffusion coefficient(D)ranging between 10^(−9) and 10^(−7) cm^(2)·s^(−1)in the various states of charge of the cell,and the highest D value for the electrodes using FLG as electron-conducting agent.Galvanostatic tests performed at constant current of C/5(1 C=1675 mA·g_(s)^(−1))show high initial specific capacity values,which decrease during the initial cycles due to a partial loss of the active material,and subsequently increase due to the activation process.All the electrodes show a Coulombic efficiency higher than 97%upon the initial cycles,and a retention strongly dependent on the electrode formulation.Therefore,this study suggests a careful control of the electrode in terms of current collector design and slurry composition to achieve good electrode morphology,mechanical stability,and promising electrochemical performance in practical Li-S cells.展开更多
基金supported by the National Natural Science Foundation of China(21573116 , 51822205 , 21875121 and 51602218)Ministry of Science and Technology of China(2017YFA0206701)+1 种基金Ministry of Education of China(B12015)the Young Thousand Talents Program
文摘The rapid development of flexible electronic devices requires the design of flexible energy-storage devices. Lithium-sulfur(Li-S) batteries are attracting much interest due to their high energy density. Therefore, flexible Li-S batteries with high areal capacity are desired. Herein, we fabricated freestanding reduced graphene oxide-sulfur(RGO@S) composite films with a cross-linked structure using a blade coating technique, followed by a subsequent chemical reduction. The porous cross-linked structure endows the composite films with excellent electrochemical performance. The batteries based on RGO@S composite films could exhibit a high discharge capacity of 1381 m Ah/g at 0.1 C and excellent cycle stability. Furthermore, the freestanding composite film possesses excellent conductivity and high mechanical strength. Therefore, they can be used as the cathodes of flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled and remained stable electrochemical performance under different bending states.
基金This work was supported by the National Natural Science Foundation of China (NSFC) (Nos. 21573116 and 21231005), Ministry of Education of China (Nos. B12015 and IRT13R30), and Tianjin Basic and High-Tech Development (No. 15JCYBJC17300). Z. Q. N. thanks the recruitment program of global experts.
文摘Rapid development of flexible electronic devices is promoting the design of flexible energy-storage devices. Lithium-sulfur (Li-S) batteries are considered as promising candidates for high energy density energy-storage devices. Therefore, flexible Li-S batteries are desired. In this study, we fabricated composite films of freestanding reduced graphene oxide nanotubes wrapped sulfur nanoparticles (RGONTs@S) by pressing RGONTs@S composite foams, which were synthesized by combining cold quenching with freeze-drying and a subsequent reduction process. These RGONTs@S composite films can serve as self-supporting cathodes for Li-S batteries without additional binders and conductive agents. Their interconnected tubular structure allows easy electron transport throughout the network and helps to confine the polysulfides produced during the charge/ discharge process. As a result, the RGONTs@S composite films exhibited a high initial specific capacity, remarkable cycling stabilit36 and excellent rate capability. More importantly, the RGONTs@S composite films can serve as electrodes in flexible Li-S batteries. As a proof of concept, soft-packaged Li-S batteries were assembled using these electrodes and they displayed stable electrochemical performance at different bending states.
基金supported by the National Natural Science Foundation of China(Grant Nos.51972261 and 51302206)。
文摘In recent years,the rapid development of portable/wearable electronics has created an urgent need for the development of flexible energy storage devices.Flexible lithium-ion batteries(FLIBs)have emerged as the most attractive and versatile flexible electronic storage devices available.Carbon nanotubes(CNTs)are hollow-structured tubular nanomaterials with high electrical conductivity,large specific surface area,and excellent mechanical properties.Graphene(G)is to some extent comparable to CNTs,because both have unlimited value in flexible electrodes.Herein,a systematic summary of the application of CNT and G in FLIBs electrodes is presented,including different functional applications and services at different temperatures.Furthermore,the effects of electrode structures,including powder,wire-shaped,and film-shaped structures,on electrochemical properties is highlighted.The assembly structures of the FLIBs consisting of CNT and G-based flexible electrodes to realize different functions,including bendability,stretchability,foldability,self-healing,and self-detecting,are systematically reviewed.The current challenges and development prospects of flexible CNT and G-based flexible electrodes and corresponding FLIBs are discussed.
基金a joint National Natural Science Foundation of China-Deutsche Forschungsgemeinschaft(NSFC-DFG) project(NSFC grant 51861135313,DFG JA466/39-1)supported by National Natural Science Foundation of China(21706199)International Science & Technology Cooperation Program of China(2015DFE52870)Jilin Province Science and Technology Development Plan(20180101208JC)。
文摘Three-dimensional(3 D) hybrid of nanocarbons is a very promising way to the high-performance design of electrocatalysis materials.However,sp^(3)-like defect structure,a combination of high strength and conduction of graphene and carbon nanotubes(CNTs) is rarely reported.Herein,3 D neural-like hybrids of graphene(from reduced graphene oxide) and carbon nanotubes(CNTs) have been integrated via sp^(3)-like defect structure by a hydrothermal approach.The sp^(3)-like defect structure endows 3 D nanocarbon hybrids with an enhanced carrier transfer,high structural stability,and electrocatalytic durability.The neural-like structure is shown to demonstrate a cascade effect of charges and significant performances regarding bio-electrocatalysis and lithium-sulfur energy storage.The concept and mechanism of "sp^(3)-like defect structure" are proposed at an atomic/nanoscale to clarify the generation of rational structure as well as the cascade electron transfer.
基金funding from the European Union’s Horizon 2020 research and innovation programme Graphene Flagship(No.881603).
文摘We investigated herein the morphological,structural,and electrochemical features of electrodes using a sulfur(S)-super P carbon(SPC)composite(i.e.,S@SPC-73),and including few-layer graphene(FLG),multiwalled carbon nanotubes(MWCNTs),or a mixture of them within the current collector design.Furthermore,we studied the effect of two different electron-conducting agents,that is,SPC and FLG,used in the slurry for the electrode preparation.The supports have high structural crystallinity,while their morphologies are dependent on the type of material used.Cyclic voltammetry(CV)shows a reversible and stable conversion reaction between Li and S with an activation process upon the first cycle leading to the decrease of cell polarization.This activation process is verified by electrochemical impedance spectroscopy(EIS)with a decrease of the resistance after the first CV scan.Furthermore,CV at increasing scan rates indicates a Li+diffusion coefficient(D)ranging between 10^(−9) and 10^(−7) cm^(2)·s^(−1)in the various states of charge of the cell,and the highest D value for the electrodes using FLG as electron-conducting agent.Galvanostatic tests performed at constant current of C/5(1 C=1675 mA·g_(s)^(−1))show high initial specific capacity values,which decrease during the initial cycles due to a partial loss of the active material,and subsequently increase due to the activation process.All the electrodes show a Coulombic efficiency higher than 97%upon the initial cycles,and a retention strongly dependent on the electrode formulation.Therefore,this study suggests a careful control of the electrode in terms of current collector design and slurry composition to achieve good electrode morphology,mechanical stability,and promising electrochemical performance in practical Li-S cells.