期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Monolayer MoS_(2)Fabricated by In Situ Construction of Interlayer Electrostatic Repulsion Enables Ultrafast Ion Transport in Lithium-Ion Batteries 被引量:2
1
作者 Meisheng Han Yongbiao Mu +3 位作者 Jincong Guo Lei Wei Lin Zeng Tianshou Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期126-142,共17页
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS... High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries. 展开更多
关键词 Monolayer MoS_(2) Interlayer electrostatic repulsion Co atoms doping Surface-capacitance effect Fast-charging lithiumion batteries
下载PDF
One-Pot Synthesis of Co-Based Coordination Polymer Nanowire for Li-Ion Batteries with Great Capacity and Stable Cycling Stability 被引量:3
2
作者 Peng Wang Xiaobing Lou +3 位作者 Chao Li Xiaoshi Hu Qi Yang Bingwen Hu 《Nano-Micro Letters》 SCIE EI CAS 2018年第2期3-11,共9页
Nanowire coordination polymer cobalt–terephthalonitrile(Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries(LIBs). A reversible capacity of... Nanowire coordination polymer cobalt–terephthalonitrile(Co-BDCN) was successfully synthesized using a simple solvothermal method and applied as anode material for lithium-ion batteries(LIBs). A reversible capacity of 1132 mAh g^(-1) was retained after 100 cycles at a rate of 100 mAg^(-1), which should be one of the best LIBs performances among metal organic frameworks and coordination polymers-based anode materials at such a rate. On the basis of the comprehensive structural and morphology characterizations including fourier transform infrared spectroscopy,~1 H NMR,^(13)C NMR, and scanning electron microscopy, we demonstrated that the great electrochemical performance of the as-synthesized Co-BDCN coordination polymer can be attributed to the synergistic effect of metal centers and organic ligands, as well as the stability of the nanowire morphology during cycling. 展开更多
关键词 NANOWIRE Coordination polymer lithiumion battery ANODE Ultra-high capacity
下载PDF
Synthesis and Electrochemical Studies on Spinel Phase LiMn_2O_4 Cathode Materials Prepared by Different Processes 被引量:5
3
作者 彭正顺 《Rare Metals》 SCIE EI CAS CSCD 1999年第2期64-69,共6页
Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesiz... Three kinds of processes, high temperature solid state reaction, precipitation and solgel technique were used to synthsize spinel phase LiMn2O4. XRD, DTATG results show that phasepure spinel LiMn2O4 could be synthesized under the lowest calcined temperature by the solgel technique compared to the precipitation method and solid state reaction. BET, SEM and electrochemical measurements results demonstrate that the features of the powders affect directly the electrochemical capacities; large specific area and small homogeneous grain size are of advantage for the lithium ion insertion and extraction in the charge and discharge process. 展开更多
关键词 Lithium manganese oxide lithiumion battery Synthesis method
下载PDF
Optimization of LiMn_2O_4 electrode properties in a gradient-and surrogate-based framework 被引量:1
4
作者 Wenbo Du Nansi Xue +3 位作者 Amit Gupta Ann M.Sastry Joaquim R.R.A.Martins Wei Shyy 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第3期335-347,共13页
In this study, the effects of discharge rate and LiMn2O4 cathode properties (thickness, porosity, particle size, and solid-state diffusivity and conductivity) on the gravimetric energy and power density of a lithium... In this study, the effects of discharge rate and LiMn2O4 cathode properties (thickness, porosity, particle size, and solid-state diffusivity and conductivity) on the gravimetric energy and power density of a lithium-ion battery cell are analyzed simultaneously using a cell-level model. Surrogate-based analysis tools are applied to simulation data to construct educed-order models, which are in turn used to perform global sensitivity analysis to compare the relative importance of cathode properties. Based on these results, the cell is then optimized for several distinct physical scenarios using gradient-based methods. The comple-mentary nature of the gradient-and surrogate-based tools is demonstrated by establishing proper bounds and constraints with the surrogate model, and then obtaining accurate optimized solutions with the gradient-based optimizer. These optimal solutions enable the quantification of the tradeoffs between energy and power density, and the effect of optimizing the electrode thickness and porosity. In conjunction with known guidelines, the numerical optimization frame-work developed herein can be applied directly to cell and pack design. 展开更多
关键词 lithiumion battery OPTIMIZATION Surrogate modeling Porous electrode model
下载PDF
High-capacity organic electrode material calix[4] quinone/CMK-3 nanocomposite for lithium batteries 被引量:8
5
作者 Shibing Zheng Huimin Sun +2 位作者 Bing Yan Jinyan Hu Weiwei Huang 《Science China Materials》 SCIE EI CSCD 2018年第10期1285-1290,共6页
Organic lithium-ion batteries(OLIBs) represent a new generation of power storage approach for their environmental benignity and high theoretical specific capacities.However, it has the disadvantage with regard to th... Organic lithium-ion batteries(OLIBs) represent a new generation of power storage approach for their environmental benignity and high theoretical specific capacities.However, it has the disadvantage with regard to the dissolution of active materials in organic electrolyte. In this study, we encapsulated high capacity material calix[4]quinone(C4Q) in the nanochannels of ordered mesoporous carbon(OMC)CMK-3 with various mass ratios ranging from 1:3 to 3:1, and then systematically investigated their morphology and electrochemical properties. The nanocomposites characterizations confirmed that C4Q is almost entirely capsulated in the nanosized pores of the CMK-3 while the mass ratio is less than2:1. As cathodes in lithium-ion batteries, the C4Q/CMK-3(1:2) nanocomposite exhibits optimal initial discharge capacity of 427 mA h g^(-1) with 58.7% cycling retention after 100 cycles. Meanwhile, the rate performance is also optimized with a capacity of 170.4 mA h g^(-1) at 1 C. This method paves a new way to apply organic cathodes for lithium-ion batteries. 展开更多
关键词 organic lithiumion batteries nanocomposites high-capacity cathode
原文传递
Depositing natural stibnite on 3D TiO_(2) nanotube array networks as high-performance thin-film anode for lithium-ion batteries 被引量:2
6
作者 Juan Yu Bi-Cheng Meng +4 位作者 Le-Jie Wang Qi Wang Wen-Long Huang Xu-Yang Wang Zhao Fang 《Rare Metals》 SCIE EI CAS CSCD 2021年第11期3215-3221,共7页
Three-dimensional(3D) thin-film electrodes are promising solution to the volume change of active materials in lithium-ion batteries.As a conductive current collector,the 3D TiO_(2) nanotube array networks(TNAs) have a... Three-dimensional(3D) thin-film electrodes are promising solution to the volume change of active materials in lithium-ion batteries.As a conductive current collector,the 3D TiO_(2) nanotube array networks(TNAs) have a one-dimensional stable electronic conductive path and increase the adhesion between the current collector and raw material,thereby improving the cycle stability of active materials.In this study,a novel 3D-TNAs@Sb_(2)S_(3) anode was fabricated by directly depositing natural stibnite onto3D TNAs.The adhesion of Sb_(2)S_(3) particles to the substrate was enhanced due to the large surface area provided by 3D-TNAs.Moreover,the porous layered structure composed of Sb_(2)S_(3) nanoparticles relieved the stress generated during lithiation and adapted to the volume change of Sb_(2)S_(3) during cycling.Therefore,the resulting composite anode exhibits high cycle and rate performance,reaching0.36 mAh·cm^(-2) after 80 cycles at the galvanostatic rate of1 mA·cm^(-2),with high coulombic efficiency of 98%. 展开更多
关键词 TiO_(2)nanotube array Natural stibnite lithiumion batteries ANODE
原文传递
Progress on the Fault Diagnosis Approach for Lithium-ion Battery Systems:Advances,Challenges,and Prospects
7
作者 Hanxiao Liu Luan Zhang Liwei Li 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第5期16-41,共26页
Because of their advantages of high energy and power density,low self-discharge rate,and long lifespan,lithium-ion batteries(LIBs)have been widely used in many applications such as electric vehicles,energy storage sys... Because of their advantages of high energy and power density,low self-discharge rate,and long lifespan,lithium-ion batteries(LIBs)have been widely used in many applications such as electric vehicles,energy storage systems,smart grids,etc.However,lithium-ion battery systems(LIBSs)frequently malfunction because of complex working conditions,harsh operating environment,battery inconsistency,and inherent defects in battery cells.Thus,safety of LIBSs has become a prominent problem and has attracted wide attention.Therefore,efficient and accurate fault diagnosis for LIBs is very important.This paper provides a comprehensive review of the latest re-search progress in fault diagnosis for LIBs.First,the types of battery faults are comprehensively introduced and the characteristics of each fault are analyzed.Then,the fault diagnosis methods are systematically elaborated,including model-based,data processing-based,machine learn-ing-based and knowledge-based methods.The latest re-search is discussed and existing issues and challenges are presented,while future developments are also prospected.The aim is to promote further researches into efficient and advanced fault diagnosis methods for more reliable and safer LIBs.Index Terms—Battery management system,battery safety,fault diagnosis,lithium-ion battery system. 展开更多
关键词 Battery management system battery safety fault diagnosis lithiumion battery system
原文传递
Facile synthesis and electrochemical properties of layered Li[Ni1/3Mn1/3Co1/3]O2 as cathode materials for lithium-ion batteries 被引量:2
8
作者 Yingfang ZHU Jingwei YOU +3 位作者 Haifu HUANG Guangxu LI Wenzheng ZHOU Jin GUO 《Frontiers of Materials Science》 SCIE CSCD 2017年第2期155-161,共7页
A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co- precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were... A layered oxide Li[Ni1/3Mn1/3Co1/3]O2 was synthesized by an oxalate co- precipitation method. The morphology, structural and composition of the as-papered samples synthesized at different calcination temperatures were investigated. The results indicate that calcination temperature of the sample at 850℃ can improve the integrity of structural significantly. The effect of calcination temperature varying from 750℃ to 950℃ on the electrochemical performance of Li[Ni1/3Mn1/3Co1/3]O2, cathode material of lithiumion batteries, has been investigated. The results show that Li[Ni1/3Mn1/3Co1/3]O2 calcined at 850℃ possesses a higher capacity retention and better rate capability than other samples. The reversible capacity is up to 178.6 mA.h.g-1, and the discharge capacity still remains 176.3 mA-h.g-1 after 30 cycles. Moreover, our strategy provides a simple and highly versatile route in fabricating cathode materials for lithium-ion batteries. 展开更多
关键词 Li[Ni1/3Mn1/3Co1/3]O2 cathode material oxalate co-precipitation lithiumion battery
原文传递
Metal-organic framework-derived Ni2P/nitrogendoped carbon porous spheres for enhanced lithium storage
9
作者 Shi Tao Peixin Cui +5 位作者 Shan Cong Shuangming Chen Dajun Wu Bin Qian Li Song Augusto Marcelli 《Science China Materials》 SCIE EI CSCD 2020年第9期1672-1682,共11页
Transition metal phosphides(TMPs)/carbonaceous matrices have gradually attracted attention in the field of energy storage.In this study,we presented nickel phosphide(Ni2P)nanoparticles anchored to nitrogen-doped carbo... Transition metal phosphides(TMPs)/carbonaceous matrices have gradually attracted attention in the field of energy storage.In this study,we presented nickel phosphide(Ni2P)nanoparticles anchored to nitrogen-doped carbon porous spheres(Ni2P/NC)by using metal-organic framework-Ni as the template.The comprehensive encapsulation architecture provides closer contact among the Ni2P nanoparticles and greatly improves the structural integrity as well as the electronic conductivity,resulting in excellent lithium storage performance.The reversible specific capacity of 286.4 mA hg^-1 has been obtained even at a high current density of 3.0 Ag^-1 and 450.4 mA hg^-1 is obtained after 800 cycles at 0.5 Ag^-1.Furthermore,full batteries based on LiNi1/3Co1/3Mn1/3O2||Ni2P/NC exhibit both good rate capability and cycling life.This study provides a powerful and indepth insight on new advanced electrodes in high-performance energy storage devices. 展开更多
关键词 nickel phosphide metal-organic frameworks X-ray absorption spectroscopy pseudocapacitance behavior lithiumion batteries
原文传递
Bimetallic zeolite imidazolate framework for enhanced lithium storage boosted by the redox participation of nitrogen atoms 被引量:6
10
作者 Xiaobing Lou Yanqun Ning +3 位作者 Chao Li Xiaoshi Hu Ming Shen Bingwen Hu 《Science China Materials》 SCIE EI CSCD 2018年第8期1040-1048,共9页
In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capa... In this work, a bimetallic zeolitic imidazolate framework (ZIF) CoZn-ZIF was synthesized via a facile sol-vothermal approach and applied in lithiumion batteries. The as-prepared CoZn-ZIF shows a high reversible capacity of 605.8 mA b g-i at a current density of 100 mA g^-1, far beyond the performance of the corresponding monometallic Co-ZIF- 67 and Zn-ZIF-8. Ex-situ synchrotron soft X-ray absorption spectroscopy, X-ray diffraction, and electron paramagnetic resonance techniques were employed to explore the Li^storage mechanism. The superior performance of CoZn-ZIF over Co-ZIF-67 and Zn-ZIF-8 could be mainly attributed to lithiation and delithiation of nitrogen atoms, accompanied by the breakage and recoordination of metal nitrogen bond. Morever, a few metal nitrogen bonds without recoordination will lead to the amorphization of CoZn-ZIF and the formation of few nitrogen radicals. 展开更多
关键词 bimetallic zeolitic imidazolate framework lithiumion battery improved capacity mechanism study
原文传递
Effects of gradient concentration on the microstructure and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials 被引量:2
11
作者 Wenming Li Weijian Tang +4 位作者 Maoqin Qiu Qiuge Zhang Muhammad Irfan Zeheng Yang Weixin Zhang 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2020年第6期988-996,共9页
Nickel(Ni)-rich layered materials have attracted considerable interests as promising cathode materials for lithium ion batteries(LIBs)owing to their higher capacities and lower cost.Nevertheless,Mn-rich cathode materi... Nickel(Ni)-rich layered materials have attracted considerable interests as promising cathode materials for lithium ion batteries(LIBs)owing to their higher capacities and lower cost.Nevertheless,Mn-rich cathode materials usually suffer from poor cyclability caused by the unavoidable side-reactions between Ni^4+ions on the surface a nd electrolytes.The design of gradient concentration(GC)particles with Ni-rich inside and Mn-rich outside is proved to be an efficient way to address the issue.Herein,a series of LiNi0.6Co0.2Mn0.2O2(LNCM 622)materials with different GCs(the atomic ratio of Ni/Mn decreasing from the core to the outer layer)have been successfully synthesized via rationally designed co-precipitation process.Experimental results demonstrate that the GC of LNCM 622 materials plays an important role in their microstructure and electrochemical properties.The as-prepared GC3.5 cathode material with optimal GC can provide a shorter pathway for lithium-ion diffusion and stabilize the near-surface region,and finally achieve excellent electrochemical performances,delivering a discharge capacity over 176 mAh·g^-1 at 0.2 C rate and exhibiting capacity retention up to 94%after 100 cycles at 1 C.T h e rationally-designed co-precipitation process for fabricating the Ni-rich layered cathode materials with gradient composition lays a solid foundation for the preparation of high-performance cathode materials for LIBs. 展开更多
关键词 gradient concentration Ni-rich LiNi0.6Co0.2Mn0.2O2 electrochemical performance lithiumion battery
原文传递
Machine learning in energy storage materials 被引量:6
12
作者 Zhong-Hui Shen Han-Xing Liu +3 位作者 Yang Shen Jia-Mian Hu Long-Qing Chen Ce-Wen Nan 《Interdisciplinary Materials》 2022年第2期175-195,共21页
With its extremely strong capability of data analysis,machine learning has shown versatile potential in the revolution of the materials research paradigm.Here,taking dielectric capacitors and lithium‐ion batteries as... With its extremely strong capability of data analysis,machine learning has shown versatile potential in the revolution of the materials research paradigm.Here,taking dielectric capacitors and lithium‐ion batteries as two representa-tive examples,we review substantial advances of machine learning in the research and development of energy storage materials.First,a thorough discussion of the machine learning framework in materials science is presented.Then,we summarize the applications of machine learning from three aspects,including discovering and designing novel materials,enriching theoretical simulations,and assisting experimentation and characterization.Finally,a brief outlook is highlighted to spark more insights on the innovative implementation of machine learning in materials science. 展开更多
关键词 dielectric capacitor energy storage lithiumion battery machine learning
原文传递
Structure and electrochemical performance of Ba Li_(2-x)Na_xTi_6O_(14)(0≤x≤2) as anode materials for lithium-ion battery 被引量:1
13
作者 陶伟 徐茂莲 +2 位作者 朱彦荣 张千玉 伊廷锋 《Science China Materials》 SCIE EI CSCD 2017年第8期728-738,共11页
A series of Ba Li_(2-x)NaxTi_6O_(14)(0≤x≤2) compounds as lithium storage materials were synthesized by a facile solidstate method. X-ray diffraction Rietveld refinement shows that the Bragg positions correspon... A series of Ba Li_(2-x)NaxTi_6O_(14)(0≤x≤2) compounds as lithium storage materials were synthesized by a facile solidstate method. X-ray diffraction Rietveld refinement shows that the Bragg positions correspond to the Ba Li_2Ti_6O_(14), indicating a successful preparation. The Na+ions doped Ba Li_2-Ti_6O_(14) compounds have larger unit-cell volume than the pristine one because ionic radius of Na+ion is 55% larger than that of Li+ion. SEM shows that the Ba Li_2-xNaxTi_6O_(14)(x=0, 0.5 and1) powders show similar irregular shaped particles between500 and 1000 nm. However, Ba Li_2-xNaxTi_6O_(14)(x=1.5 and 2)powders show similar rod-like shape. CV reveals that the passivating film is mainly formed during the first insertion process, and the solid electrolyte interface film on the surface of Ba Li_2-xNaxTi_6O_(14)(0≤x≤2) is formed below 0.7 V in the first cycle. Compared with other samples, Ba Li_0.5Na1.5Ti_6O_(14) exhibits higher reversible capacity, better rate capability and superior cyclability. Ba Li_0.5Na1.5Ti_6O_(14) delivers the delithiation capacities of 162.1 mAhg^-(1)at 50 m A g^-(1), 158.1 mAhg^-(1)at 100 m A g^-(1), 156.7 mAhg^-(1)at 150 m A g^-(1), 152.2 mAhg^-(1)at 200 m A g^-(1), 147.3 mAhg^-(1)at 250 m A g^-(1)and 142 mAhg^-(1)at 300 m A g^-(1), respectively. An interesting thing is that Ba Na2Ti_6O_(14) as anode also shows an acceptable electrochemical performance. All these improved electrochemical performances of Ba Li_0.5Na1.5Ti_6O_(14) are attributed to the lowest polarization and the highest lithium ion diffusion coefficient among all samples.Hence, Ba Li_0.5Na1.5Ti_6O_(14) with excellent cycling performance,simple synthesis route and wide discharge voltage range can be a possible anode candidate for lithium-ion batteries. 展开更多
关键词 Ba Li2Ti6O14 Ba Na2Ti6O14 anode material lithiumion battery delithiation capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部