With the objective of establishing the necessary conditions for 3D seismic data from mountainous areas in western China, we compared the application results of wave impedance technology in the lithology and exploratio...With the objective of establishing the necessary conditions for 3D seismic data from mountainous areas in western China, we compared the application results of wave impedance technology in the lithology and exploration of coal fields. First, we introduce principles and features of three kinds of inversion methods. i.e., Model-Based Inversion, Constrained Sparse Spike Inversion (CSSI) and Geology-Seismic Feature Inversion. Secondly, these inversion methods are contrasted in their application to 3D seismic data from some coalfields in western China. The main information provided by the research includes: improving the vertical resolution of coal deposit strata, inferring lateral variation of the lithology and predicting coal seams and their roof lithology. Finally, the comparison between the three methods shows that the model-based inversion has the higher resolution, while CSSI inversion has better waveform continuity. The geology-seismic feature inversion requires information from a large number of wells and many types of logging curves of good quality. All three methods can meet the requirements of seismic exploration for lithological exploration in coal fields.展开更多
基金part of an ongoing project of the National Important Industry Technological Development Project (High Precision 3D Seismic Technology of Coal Resources of Western China)the financial support from the National Basic Research Program of China (No.2009CB 219603)the National Key Scientific and Technological Project of China (No.2008ZX05035-005-003HZ)
文摘With the objective of establishing the necessary conditions for 3D seismic data from mountainous areas in western China, we compared the application results of wave impedance technology in the lithology and exploration of coal fields. First, we introduce principles and features of three kinds of inversion methods. i.e., Model-Based Inversion, Constrained Sparse Spike Inversion (CSSI) and Geology-Seismic Feature Inversion. Secondly, these inversion methods are contrasted in their application to 3D seismic data from some coalfields in western China. The main information provided by the research includes: improving the vertical resolution of coal deposit strata, inferring lateral variation of the lithology and predicting coal seams and their roof lithology. Finally, the comparison between the three methods shows that the model-based inversion has the higher resolution, while CSSI inversion has better waveform continuity. The geology-seismic feature inversion requires information from a large number of wells and many types of logging curves of good quality. All three methods can meet the requirements of seismic exploration for lithological exploration in coal fields.