Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the ocean...Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.展开更多
The South China Block(SCB)was formed through the Neoproterozoic amalgamation of the Yangtze Block(YB),the Cathaysia Block(CB),and the accreted components of the Jiangnan orogenic belt(JNO),it is bounded by the Jiangs...The South China Block(SCB)was formed through the Neoproterozoic amalgamation of the Yangtze Block(YB),the Cathaysia Block(CB),and the accreted components of the Jiangnan orogenic belt(JNO),it is bounded by the Jiangshan–Shaoxing–Pingxiang fault(JSPF)and the Jiujiang–Shitai–Jishou fault(JSJF)(Yao et al.,2019).The SCB has undergone a series of complex geological events,including Paleozoic orogeny,Mesozoic collisions with the North China Craton(NCC)and the Indochina Block,as well as the intracontinental orogeny,leading to extensive lithospheric modifications and magmatic activities(Zhang H J et al.,2023;Fig.1).展开更多
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi...Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.展开更多
High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise a...High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.展开更多
The Bohai Bay Basin is a region where part of the North China Craton has been thinned and destroyed. It has experienced two periods of crustal thinning that occurred during the Cretaceous and Paleogene, but investigat...The Bohai Bay Basin is a region where part of the North China Craton has been thinned and destroyed. It has experienced two periods of crustal thinning that occurred during the Cretaceous and Paleogene, but investigations of its Mesozoic and Cenozoic lithospheric thermal structure are limited. Therefore, in this study,the distributions of mantle heat flow, crustal heat flow, and Moho temperatures during the Meso-Cenozoic are calculated based on analyses of the thermal history of the Bohai Bay Basin. The results indicate that the ratio of mantle heat flow to surface heat flow peaked during the late stages of the early Cretaceous and during the middle to late Paleogene. The corresponding mantle heat flow was more than 65% of the surface heat flow. Moho temperatures reached three peaks: 900-1100℃ in the late stages of the early Cretaceous;820-900℃ in the middle to late Paleogene; and(in the Linqing Depression, Cangxian Uplift, and Jizhong Depression) 770-810℃ during the early Neogene. These results reveal that the Bohai Bay Basin experienced significant geological change during the Cretaceous, including the transformation of lithospheric thermal structure from "cold mantle and hot crust" before the Cretaceous to "hot mantle and cold crust" after the Cretaceous. The results also indicate that the basin experienced two large-scale rifting events.Therefore, this work may provide the thermal parameters for further investigations of the geodynamic evolution of eastern China.展开更多
Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is ...Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick (-200 km) cratonic (highly resistive) lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the CretaceouseTertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin (-120 km) lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.展开更多
Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a compo...Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.展开更多
This study presents the outcomes of the local earthquake tomography applied in the Moroccan Atlas domains. A seismic data collected by 36 seismic and a linearized inversion technics are used for determination of local...This study presents the outcomes of the local earthquake tomography applied in the Moroccan Atlas domains. A seismic data collected by 36 seismic and a linearized inversion technics are used for determination of local velocity structure.The interpretation of tomography images results emphasizes a new and detailed lithosphere structure: a remaining subducted zone beneath the Souss Basin located from 20-to 45-km depth dipping to the North is detected and interpreted as a body that marks the border between the Moroccan Anti-Atlas and the Meseta-Atlas domains.A subduction zones is detected in the SW of the High Atlas, beneath the Hercynian Tichka massif from 10 to 50-km inclined away from Anti Atlas and in the eastern part of Anti Atlas, dipping northward from Jbel Ougnat at 15e40 km.The junction of the western and middle High Atlas is depicted by two high velocity blocks subducting from 10 to 50 km depth. The first is dipping SW beneath the High Atlas and the second is dipping SE beneath the Ouarzazate Basin.In the northern part of the southwestern High Atlas, a high velocity body dipping towards the north beneath the Essaouira Basin from 15 to 45 km depth.In northeastern part of the High Atlas in the Mougeur zone, a high velocity body is detected from 10 to 45 km depth, dipping to the Se E beneath the eastern High Atlas.The negative lithospheric anomalies found in the upper and in the lower crust are interpreted as a hot asthenospheric material upwelling from deep and gradually replacing the part of crust detached in the High Atlas. The occurrence magmatic activities in these regions testify the existence of a remaining subduction process. This paper argues the implication of these deep structures in the evolution of the Moroccan Atlas Mountain.展开更多
This paper briefly reviews main progress in the research on lithospheric structure and continental geodynamics made by Chinese geophysicists during last 4 years since 22nd IUGG general assembly in July 1999. The resea...This paper briefly reviews main progress in the research on lithospheric structure and continental geodynamics made by Chinese geophysicists during last 4 years since 22nd IUGG general assembly in July 1999. The research mainly covers the following fields: investigations on regional lithospheric structure, DSS survey of crust and upper mantle velocity structure, study on present-day inner movement and deformation of Chinese mainland by analyzing GPS observations, geodynamics of Qingzang plateau, geophysical survey of the Dabie-Sulu ultra-high pressure metamorphic belt and probing into its formation mechanism, geophysical observations in sedimentary basins and study on their evolution process, and plate dynamics, etc.展开更多
To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The co...To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The continental shelf of western QDNB,having the lowest crustal extension factor,is recognized as the initial non-uniform extension crust model.This regime is referred to as the jelly sandwich-1(JS-1)regime,having a lower crustal ductile layer.The oceanward part of the western QDNB changes from the relatively strong JS-1 to the weak crème brûlée-1(CB-1)regime with a significantly thinned lower crust.However,the crustal extension in the eastern QDNB is significantly higher than that in the western QDNB,with conjugate faults extending deep into the lower crust.The central depression zone of the eastern QDNB is defined as the much stronger JS-2 regime,having a brittle deformation across the entire crust and upper mantle and characteristics of a cold and rigid oceanic crust.Unlike the widespread lower crustal high-velocity layers(HVLs)in the northern margin of the South China Sea,the HVLs are confined to the lower crustal base of the central depression zone of the QDNB.The HVLs of QDNB are the results of non-uniform extension with mantle underplating during the lower crustal-necking stage,which is facilitated by the lower crustal ductile layer and derived by mantle lat-eral flowing.The gigantic mantle low-velocity zone related to the Red River Fault should be a necessary factor for the east-west differential margin rifting process of QDNB,which may drive the lateral flowing in the mantle.展开更多
The South China block(SC),composed of Cathaysia(CA),Jiangnan Orogenic belt(JNB),and Yangtze block(YB),is one of the most important poly-metallic metallogenic provinces in the world(Zhang et al.,2013),containing of fou...The South China block(SC),composed of Cathaysia(CA),Jiangnan Orogenic belt(JNB),and Yangtze block(YB),is one of the most important poly-metallic metallogenic provinces in the world(Zhang et al.,2013),containing of four famous major Mesozoic metallogenic belts,involving the Middle-Lower Yangtze Fe-Cu-Au metallogenic belt(MYMB).展开更多
Based on the blasting seismic detection data obtained in the southeast of North China in recent years,this paper comprehensively analyzes and studies the crust-mantle lithospheric structure and seismological character...Based on the blasting seismic detection data obtained in the southeast of North China in recent years,this paper comprehensively analyzes and studies the crust-mantle lithospheric structure and seismological characteristics of different tectonic regions,such as offshore basins,west Shandong uplift,Tanlu fault zone and Jiangsu-Shandong orogenic belt.The low-velocity Pg waves in Dongying depression and Northern Jiangsu basin reveal the unstable basement structure with extremely thick sediments.The travel time of Pg wave is characterized by relatively low propagation velocity and small crustal thickness of offshore continental margin;the first break time and high apparent velocity of Pg wave in west Shandong uplift indicate that the sedimentary basement is relatively thin.The Pm wave shows the characteristic of dominant wave in the first-order velocity discontinuity of the crust-mantle interface,which reflects the high crustal velocity and stable structure in west Shandong uplift.The Pm and Pl wave are obviously complicated,which can reflect the crust-mantle lithospheric structure of the transitional zone between Tanlu fault zone and Jiangsu-Shandong orogenic belt.The small time difference between Pn and PL waves can be regarded as the highly destructive seismological manifestation of Tanlu fault zone on the crust-lithosphere scale.Based on many geophysical phenomena such as electrical structure,density structure and terrestrial heat flow,it is believed that the lithospheric destruction degree of Tanlu fault zone and Jiangsu-Shandong orogenic belt was high during the destruction of the North China Craton.展开更多
In this paper,the characteristics of the lateral variations of the deep heat flow and Hthospheric geotemperature distribution in Yunnan have been studied,and the lithospheric geothermal structure has been divided into...In this paper,the characteristics of the lateral variations of the deep heat flow and Hthospheric geotemperature distribution in Yunnan have been studied,and the lithospheric geothermal structure has been divided into three types,i.e.the geothermal structure in the typical modern tectonically active region,transitional geological region and stable geological region.Finally,the relationship between the geotherm and seismicitv has been discussed.展开更多
Whole-lithosphere structure has direct implications for both the genesis of minerals and the locations of mineral emplacement;thus knowledge of the deep structural framework of the lithosphere can advance understandin...Whole-lithosphere structure has direct implications for both the genesis of minerals and the locations of mineral emplacement;thus knowledge of the deep structural framework of the lithosphere can advance understanding of the development and evolution of mineral systems.展开更多
This paper presents the survey and research work of two land-sea profiles in the Bohai Sea, China, carried out in 2010-2011, including the seismic sources on land and in the sea, the ocean bottom seismographs (OBS) ...This paper presents the survey and research work of two land-sea profiles in the Bohai Sea, China, carried out in 2010-2011, including the seismic sources on land and in the sea, the ocean bottom seismographs (OBS) and their recovery, the coupling of OBS and the environment noise in sea area, the data quality of OBSs, and the result of data analysis. We focused on the investigation of crustal structures revealed by the two NE/EW-trending joint land-sea profiles. In combination with the Pn-velocity distribution and gravity- magnetic inversion results in the North China Craton, we propose that the undulation of the Moho interface in the Bohai and surrounding areas is not strong, and the lithospheric thinning is mainly caused by the thinning of its mantle part. The research result indicates that obvious lateral variations of Moho depth and seismic velocity appear nearby all the large-scale faults in Bohai Sea, and there is evidence of underplating and reforming of the lower crust by mantle material in the Bohai area. However, geophysical evidence does not appear to support the "mantle plume" or "delamination" model for the North China Craton destruction. The crustal structure of the Bohai Sea revealed "a relatively normal crust and obviously thinned mantle lid", local velocity anomalies and instability phenomena in the crust. These features may represent a combined effect of North China-Yangtze collision at an early stage and the remote action of Pacific plate subduction at a late stage.展开更多
In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 40...In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 400km depth in the crust and upper mantle of Qinghai\|Tibet plateau and Its Adjacent Regions (22°~44°N,70°~110°E).The first step of the waveform inversion used involved the matching of the waveforms of fundamental and highermost Ravleigh waves with waveforms synthesized from stratified models;in the second stage,the 3\|D model was constructed by solve linear constrains equation. The major structural features inferred from the surface waveform inversions can be summarized as follows:(1) There is a great contrast between surface waveform through Qinghai—Thibet plateau and the others.Main frequency of the former is lower than the latter, which indicate the crust depth of Qinghai—Tibet plateau is deeper than the others. In addition,the amplitude of about 30s period and 50s period is lower than both sides,which implied these exist lower velocity layer at about 25km depth and about 50km depth in Qinghai—Tibet plateau Crust.The former is common,the latter was argued because resolution of most method can not prove it.展开更多
The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospec...The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.展开更多
The 3D P-wave velocity structure beneath the South China Block was determined by applying arrival times from 269 teleseismic events recorded by 240 seismic stations within the study region. Our tomographic results rev...The 3D P-wave velocity structure beneath the South China Block was determined by applying arrival times from 269 teleseismic events recorded by 240 seismic stations within the study region. Our tomographic results reveal the deep structural characteristics of major tectonic units and ore concentration areas. There are distinct high velocity anomalies beneath the ancient Yangtze and Cathaysia blocks, with the lithosphere of the Cathaysia Block being thinner than the Yangtze Block;the Jiangnan orogenic belt, located in the combined zone of two blocks, is a high and low velocity anomaly conversion zone;the famous metallogenic belts of Edongnan, the Youjiang Basin and the Cathaysia Block are obviously low velocity areas with different metallogenic mechanisms. The deep ore-forming material source in the Edongnan metallogenic belt is different from that of the Cathaysia Block. The low velocity anomaly under the Cathaysia Block related to mineralization results from the upwelling of mantle material, caused by the joint action of the Paleo-Tethys tectonic domain, the Paleo-Pacific tectonic domain and the Hainan mantle plume migration and erosion, which has been occurring from northeast to southwest since 80 Ma. The low-temperature mineralization mechanism of Youjiang Basin should be considered not only in terms of the influence of the Emeishan mantle plume in the west and the Paleo-Tethys tectonic domain in the south, but also in the context of the influence of the upwelling of asthenospheric material from the PaleoPacific tectonic domain in the east.展开更多
In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical e...In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical equation be- tween the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2 40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART), the inversion of 30' ~ 30' residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed struc- tural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.展开更多
基金Supported by the State Key Program of National Natural Science of China(No.42330308)the Project of Donghai Laboratory(No.DH-2022ZY0005)+4 种基金the Scientific Research Fund of the Second Institute of OceanographyMinistry of Natural Resources(No.QHXZ2301)the National Science Foundation for Distinguished Young Scholars of China(No.42025601)for Young Scientists of China(No.41906064)the Zhejiang Provincial Natural Science Foundation of China(No.LDQ24D060001)。
文摘Mid-ocean ridge and oceanic transforms are among the most prominent features on the seafloor surface and are crucial for understanding seafloor spreading and plate tectonic dynamics,but the deep structure of the oceanic lithosphere remains poorly understood.The large number of microearthquakes occurring along ridges and transforms provide valuable information for gaining an indepth view of the underlying detailed seismic structures,contributing to understanding geodynamic processes within the oceanic lithosphere.Previous studies have indicated that the maximum depth of microseismicity is controlled by the 600-℃isotherm.However,this perspective is being challenged due to increasing observations of deep earthquakes that far exceed this suggested isotherm along mid-ocean ridges and oceanic transform faults.Several mechanisms have been proposed to explain these deep events,and we suggest that local geodynamic processes(e.g.,magma supply,mylonite shear zone,longlived faults,hydrothermal vents,etc.)likely play a more important role than previously thought.
基金jointly sponsored by the Sinoprobe Laboratory of Chinese Academy of Geological Sciences(Grant No.JKYQN202303)National Natural Science Foundation of China(Grant No.U2344220)the China Geology Survey Project(Grant Nos.DD20230008,DD20240079)。
文摘The South China Block(SCB)was formed through the Neoproterozoic amalgamation of the Yangtze Block(YB),the Cathaysia Block(CB),and the accreted components of the Jiangnan orogenic belt(JNO),it is bounded by the Jiangshan–Shaoxing–Pingxiang fault(JSPF)and the Jiujiang–Shitai–Jishou fault(JSJF)(Yao et al.,2019).The SCB has undergone a series of complex geological events,including Paleozoic orogeny,Mesozoic collisions with the North China Craton(NCC)and the Indochina Block,as well as the intracontinental orogeny,leading to extensive lithospheric modifications and magmatic activities(Zhang H J et al.,2023;Fig.1).
基金supported by the National Natural Science Foundation of China(Nos.42174063,92155307,41976046)Guangdong Provincial Key Laboratory of Geophysical High-resolution Imaging Technology under(No.2022B1212010002)Project for introduced Talents Team of Southern Marine Science and Engineering Guangdong(Guangzhou)(No.GML2019ZD0203)。
文摘Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models.
基金supported by the National Natural Science Foundation of China (No. 41222028)the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program for Creative Research Teams
文摘High-resolution lithospheric structure is essential for understanding the tectonic evolution and deformation patterns of the southeastern Tibetan plateau. This is now possible due to recent advances in ambient noise and earthquake surface wave tomography, and great improvements in data coverage from dense portable array stations deployed in SE Tibet. In this review paper, I first give a brief overview of the tomographic methods from ambient noise and earthquake surface waves, and then summarize the major findings about the lithospheric structure and deformation in SE Tibet revealed by ambient noise and earthquake surface wave tomography as well as by other seismic and geophysical observations. These findings mainly include the 3-D distribution of mechanically weak zones in the mid-lower crust, lateral and vertical variations in radial and azimuthal anisotropy, possible interplay of some fault zones with crustal weak zones, and importance of strike-slip faulting on upper crustal deformation. These results suggest that integration of block extrusion in the more rigid upper-middle crust and channel flow in the more ductile mid-lower crust will be more compatible with the current geophysical observations. Finally I discuss some future perspective researches in SE Tibet, including array-based tomography, joint inversion using multiple seismic data, and integration of geodynamic modeling and seismic observations.
基金funded by the National Natural Science Foundation of China (Grant Nos.41402219, 41302202,41125010,41302202,and 91114202)
文摘The Bohai Bay Basin is a region where part of the North China Craton has been thinned and destroyed. It has experienced two periods of crustal thinning that occurred during the Cretaceous and Paleogene, but investigations of its Mesozoic and Cenozoic lithospheric thermal structure are limited. Therefore, in this study,the distributions of mantle heat flow, crustal heat flow, and Moho temperatures during the Meso-Cenozoic are calculated based on analyses of the thermal history of the Bohai Bay Basin. The results indicate that the ratio of mantle heat flow to surface heat flow peaked during the late stages of the early Cretaceous and during the middle to late Paleogene. The corresponding mantle heat flow was more than 65% of the surface heat flow. Moho temperatures reached three peaks: 900-1100℃ in the late stages of the early Cretaceous;820-900℃ in the middle to late Paleogene; and(in the Linqing Depression, Cangxian Uplift, and Jizhong Depression) 770-810℃ during the early Neogene. These results reveal that the Bohai Bay Basin experienced significant geological change during the Cretaceous, including the transformation of lithospheric thermal structure from "cold mantle and hot crust" before the Cretaceous to "hot mantle and cold crust" after the Cretaceous. The results also indicate that the basin experienced two large-scale rifting events.Therefore, this work may provide the thermal parameters for further investigations of the geodynamic evolution of eastern China.
基金under the Supra Institutional Project (SIP-0012)carried under INDEX (PSC0204) project,funded by Council of Scientific and Industrial Research (CSIR), New Delhi, India
文摘Broad-band and long period magnetotelluric measurements made at 63 locations along -500 km long Chikmagalur-Kavali profile,that cut across the Dharwar craton (DC) and Eastern Ghat Mobile Belt (EGMB) in south India,is modelled to examine the lithosphere architecture of the cratonic domain and define tectonic boundaries.The 2-D resistivity model shows moderately conductive features that intersperse a highly resistive background of crystalline rocks and spatially connect to the exposed schist belts or granitic intrusions in the DC.These features are therefore interpreted as images of fossil pathways of the volcanic emplacements associated with the greenstone belt and granite suite formation exposed in the region.A near vertical conductive feature in the upper mantle under the Chitradurga Shear Zone represents the Archean suture between the western and eastern blocks of DC.Although thick (-200 km) cratonic (highly resistive) lithosphere is preserved,significant part of the cratonic lithosphere below the western DC is modified due to plume-continental lithosphere interactions during the CretaceouseTertiary period.A west-verging moderately conductive feature imaged beneath EGMB lithosphere is interpreted as the remnant of the Proterozoic collision process between the Indian land mass and East Antarctica.Thin (-120 km) lithosphere is seen below the EGMB,which form the exterior margin of the India shield subsequent to its separation from East Antarctica through rifting and opening of the Indian Ocean in the Cretaceous.
基金supported by grants from the National Natural Science Foundation of China(General Program No.40974058)National Science Fund for Distinguished Young Scholars(No.40904025 and 41404060)+4 种基金Fundamental Research Funds for the Central Universities(2652014016)National Natural Science Foundation of ChinaUnited States National Science FoundationScience Foundation of Ireland(award 08/RFP/GEO1693 to AGJ)Natural Science and Engineering Research Council(Canada)for financial support
文摘Project INDEPTH (InterNational DEep Profiling of Tibet and the Himalaya) is an interdisciplinary program designed to develop a better understanding of deep structures and mechanics of the Tibetan Plateau. As a component of magnetoteUuric (MT) work in the 4th phase of the project, MT data were collected along a profile that crosses the eastern segment of the Altyn Tagh fault on the northern margin of the plateau. Time series data processing used robust algorithms to give high quality responses. Dimensionality analysis showed that 2D approach is only valid for the northern section of the profile. Consequently, 2D inversions were only conducted for the northern section, and 3D inversions were conducted on MT data from the whole profile. From the 2D inversion model, the eastern segment of the Altyn Tagh fault only appears as a crustal structure, which suggests accommodation of strike slip motion along the Altyn Tagh fault by thrusting within the Qilian block. A large-scale off-proffie conductor within the mid-lower crust of the Qilian block was revealed from the 3D inversion model, which is probably correlated with the North Qaidam thrust belt. Furthermore, the unconnected conductors from the 3D inversion model indicate that deformations in the study area are generally localized.
基金supported by PROTARS D15/41 project(CNRST)the Institut Scientifique Rabat
文摘This study presents the outcomes of the local earthquake tomography applied in the Moroccan Atlas domains. A seismic data collected by 36 seismic and a linearized inversion technics are used for determination of local velocity structure.The interpretation of tomography images results emphasizes a new and detailed lithosphere structure: a remaining subducted zone beneath the Souss Basin located from 20-to 45-km depth dipping to the North is detected and interpreted as a body that marks the border between the Moroccan Anti-Atlas and the Meseta-Atlas domains.A subduction zones is detected in the SW of the High Atlas, beneath the Hercynian Tichka massif from 10 to 50-km inclined away from Anti Atlas and in the eastern part of Anti Atlas, dipping northward from Jbel Ougnat at 15e40 km.The junction of the western and middle High Atlas is depicted by two high velocity blocks subducting from 10 to 50 km depth. The first is dipping SW beneath the High Atlas and the second is dipping SE beneath the Ouarzazate Basin.In the northern part of the southwestern High Atlas, a high velocity body dipping towards the north beneath the Essaouira Basin from 15 to 45 km depth.In northeastern part of the High Atlas in the Mougeur zone, a high velocity body is detected from 10 to 45 km depth, dipping to the Se E beneath the eastern High Atlas.The negative lithospheric anomalies found in the upper and in the lower crust are interpreted as a hot asthenospheric material upwelling from deep and gradually replacing the part of crust detached in the High Atlas. The occurrence magmatic activities in these regions testify the existence of a remaining subduction process. This paper argues the implication of these deep structures in the evolution of the Moroccan Atlas Mountain.
文摘This paper briefly reviews main progress in the research on lithospheric structure and continental geodynamics made by Chinese geophysicists during last 4 years since 22nd IUGG general assembly in July 1999. The research mainly covers the following fields: investigations on regional lithospheric structure, DSS survey of crust and upper mantle velocity structure, study on present-day inner movement and deformation of Chinese mainland by analyzing GPS observations, geodynamics of Qingzang plateau, geophysical survey of the Dabie-Sulu ultra-high pressure metamorphic belt and probing into its formation mechanism, geophysical observations in sedimentary basins and study on their evolution process, and plate dynamics, etc.
基金supported by the National Natural Science Foundation of China(Nos.41530963,41176038 and 91858215).
文摘To investigate the thermo-rheological structure and passive continental margin rifting in the Qiongdongnan Basin(QDNB),thermo-rheological models of two profiles across the western and eastern QDNB are presented.The continental shelf of western QDNB,having the lowest crustal extension factor,is recognized as the initial non-uniform extension crust model.This regime is referred to as the jelly sandwich-1(JS-1)regime,having a lower crustal ductile layer.The oceanward part of the western QDNB changes from the relatively strong JS-1 to the weak crème brûlée-1(CB-1)regime with a significantly thinned lower crust.However,the crustal extension in the eastern QDNB is significantly higher than that in the western QDNB,with conjugate faults extending deep into the lower crust.The central depression zone of the eastern QDNB is defined as the much stronger JS-2 regime,having a brittle deformation across the entire crust and upper mantle and characteristics of a cold and rigid oceanic crust.Unlike the widespread lower crustal high-velocity layers(HVLs)in the northern margin of the South China Sea,the HVLs are confined to the lower crustal base of the central depression zone of the QDNB.The HVLs of QDNB are the results of non-uniform extension with mantle underplating during the lower crustal-necking stage,which is facilitated by the lower crustal ductile layer and derived by mantle lat-eral flowing.The gigantic mantle low-velocity zone related to the Red River Fault should be a necessary factor for the east-west differential margin rifting process of QDNB,which may drive the lateral flowing in the mantle.
基金jointly sponsored by the National Natural Science Foundation of China(Grant Nos.41630320,92062108)the Geology Survey Project(Grant Nos.DD20190012,DD20160082)the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resource,Institute of Geology,Chinese Academy of Geological Sciences(Grant No.J1901-16)
文摘The South China block(SC),composed of Cathaysia(CA),Jiangnan Orogenic belt(JNB),and Yangtze block(YB),is one of the most important poly-metallic metallogenic provinces in the world(Zhang et al.,2013),containing of four famous major Mesozoic metallogenic belts,involving the Middle-Lower Yangtze Fe-Cu-Au metallogenic belt(MYMB).
基金supported by National Natural Science Foundation of China(approval number:41474077,41774070)。
文摘Based on the blasting seismic detection data obtained in the southeast of North China in recent years,this paper comprehensively analyzes and studies the crust-mantle lithospheric structure and seismological characteristics of different tectonic regions,such as offshore basins,west Shandong uplift,Tanlu fault zone and Jiangsu-Shandong orogenic belt.The low-velocity Pg waves in Dongying depression and Northern Jiangsu basin reveal the unstable basement structure with extremely thick sediments.The travel time of Pg wave is characterized by relatively low propagation velocity and small crustal thickness of offshore continental margin;the first break time and high apparent velocity of Pg wave in west Shandong uplift indicate that the sedimentary basement is relatively thin.The Pm wave shows the characteristic of dominant wave in the first-order velocity discontinuity of the crust-mantle interface,which reflects the high crustal velocity and stable structure in west Shandong uplift.The Pm and Pl wave are obviously complicated,which can reflect the crust-mantle lithospheric structure of the transitional zone between Tanlu fault zone and Jiangsu-Shandong orogenic belt.The small time difference between Pn and PL waves can be regarded as the highly destructive seismological manifestation of Tanlu fault zone on the crust-lithosphere scale.Based on many geophysical phenomena such as electrical structure,density structure and terrestrial heat flow,it is believed that the lithospheric destruction degree of Tanlu fault zone and Jiangsu-Shandong orogenic belt was high during the destruction of the North China Craton.
基金The work was supported by the Applied and Basic Research Foundation of Yunnan Province (93D045Q), China
文摘In this paper,the characteristics of the lateral variations of the deep heat flow and Hthospheric geotemperature distribution in Yunnan have been studied,and the lithospheric geothermal structure has been divided into three types,i.e.the geothermal structure in the typical modern tectonically active region,transitional geological region and stable geological region.Finally,the relationship between the geotherm and seismicitv has been discussed.
基金part of the research project"Crustmantle interactions beneath the Hangai Mountains in western Mongolia"the financial support of the DFG and the SNF,awarded through the DACH program
文摘Whole-lithosphere structure has direct implications for both the genesis of minerals and the locations of mineral emplacement;thus knowledge of the deep structural framework of the lithosphere can advance understanding of the development and evolution of mineral systems.
基金The National Natural Science Foundation of China under contract Nos 41210005,41074058 and 90814011the National High Technique R&D Program (863 Program) under contract Nos 2009AA093401 and 2011ZX05008-006-30
文摘This paper presents the survey and research work of two land-sea profiles in the Bohai Sea, China, carried out in 2010-2011, including the seismic sources on land and in the sea, the ocean bottom seismographs (OBS) and their recovery, the coupling of OBS and the environment noise in sea area, the data quality of OBSs, and the result of data analysis. We focused on the investigation of crustal structures revealed by the two NE/EW-trending joint land-sea profiles. In combination with the Pn-velocity distribution and gravity- magnetic inversion results in the North China Craton, we propose that the undulation of the Moho interface in the Bohai and surrounding areas is not strong, and the lithospheric thinning is mainly caused by the thinning of its mantle part. The research result indicates that obvious lateral variations of Moho depth and seismic velocity appear nearby all the large-scale faults in Bohai Sea, and there is evidence of underplating and reforming of the lower crust by mantle material in the Bohai area. However, geophysical evidence does not appear to support the "mantle plume" or "delamination" model for the North China Craton destruction. The crustal structure of the Bohai Sea revealed "a relatively normal crust and obviously thinned mantle lid", local velocity anomalies and instability phenomena in the crust. These features may represent a combined effect of North China-Yangtze collision at an early stage and the remote action of Pacific plate subduction at a late stage.
文摘In this paper,218 long period Rayleigh wave records from 7 seismic station of CDSN are selected.We applied a partitioned waveform inversion to these data in order to construct a 3\|D model of shear velocity down to 400km depth in the crust and upper mantle of Qinghai\|Tibet plateau and Its Adjacent Regions (22°~44°N,70°~110°E).The first step of the waveform inversion used involved the matching of the waveforms of fundamental and highermost Ravleigh waves with waveforms synthesized from stratified models;in the second stage,the 3\|D model was constructed by solve linear constrains equation. The major structural features inferred from the surface waveform inversions can be summarized as follows:(1) There is a great contrast between surface waveform through Qinghai—Thibet plateau and the others.Main frequency of the former is lower than the latter, which indicate the crust depth of Qinghai—Tibet plateau is deeper than the others. In addition,the amplitude of about 30s period and 50s period is lower than both sides,which implied these exist lower velocity layer at about 25km depth and about 50km depth in Qinghai—Tibet plateau Crust.The former is common,the latter was argued because resolution of most method can not prove it.
文摘The 1°×1° distribution map of crustmantle structural ratio R for the lithosphere along the Longitudinal Seismic Belt of China has been compiled using computer based on the results of geophysical prospecting by previous researchers, and the latest results by the present authors. Based on this map, an insight into the structural features of the crustmantle assemblage along the Longitudinal Seismic Belt has been gained, while their relation to seismic activity and the distributions of geothermal flux and intracrustal high conductivitylow velocity layers, as well as their tectonic effect to seismicity have been discussed.
基金supported by Shanghai Sheshan National Geophysical Observatory(Grant No.2020k07)the Chinese Geological Survey(Grant Nos.DD20190448,DD20190370)+1 种基金the National Natural Science Foundation of China(Grant Nos.41374101,42174172)the National Key Research and Development Program of China(Grant No.2019YFA0708601)。
文摘The 3D P-wave velocity structure beneath the South China Block was determined by applying arrival times from 269 teleseismic events recorded by 240 seismic stations within the study region. Our tomographic results reveal the deep structural characteristics of major tectonic units and ore concentration areas. There are distinct high velocity anomalies beneath the ancient Yangtze and Cathaysia blocks, with the lithosphere of the Cathaysia Block being thinner than the Yangtze Block;the Jiangnan orogenic belt, located in the combined zone of two blocks, is a high and low velocity anomaly conversion zone;the famous metallogenic belts of Edongnan, the Youjiang Basin and the Cathaysia Block are obviously low velocity areas with different metallogenic mechanisms. The deep ore-forming material source in the Edongnan metallogenic belt is different from that of the Cathaysia Block. The low velocity anomaly under the Cathaysia Block related to mineralization results from the upwelling of mantle material, caused by the joint action of the Paleo-Tethys tectonic domain, the Paleo-Pacific tectonic domain and the Hainan mantle plume migration and erosion, which has been occurring from northeast to southwest since 80 Ma. The low-temperature mineralization mechanism of Youjiang Basin should be considered not only in terms of the influence of the Emeishan mantle plume in the west and the Paleo-Tethys tectonic domain in the south, but also in the context of the influence of the upwelling of asthenospheric material from the PaleoPacific tectonic domain in the east.
基金supported by Project SinoProbe-02: Experiment and Integration of Deep Probe Techniques in ChinaNational Natural Science Foundation of China (NSFC, Grant No. 40874067)the Research Fund for the Doctoral Program of Higher Education (Grant No. 20070491520)
文摘In this paper, we analyze lithospheric density distribution of China and surrounding regions on the basis of 30' × 30' gravity data and 1°×1 °P-wave velodty data, Firstly, we used the empirical equation be- tween the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density. Secondly, we calculated the gravity anomaly, caused by the Moho discontinuity and the sedimentary layer discontinuity, by the Parker formula. Thirdly, the gravity anomaly of the spherical harmonics with 2 40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96. Finally, by using Algebra Reconstruction Techniques (ART), the inversion of 30' ~ 30' residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed struc- tural model. The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure. The density is relatively high in the Philippine Sea plate, Japan Sea, the Indian plate, the Kazakhstan shield and the Western Siberia plain, whereas the Tibetan Plateau has low-density characteristics. The minimum value of density lies in the north of Philippines, in the Taiwan province and in the Ryukyu island arc.