Stimulated emission depletion microscopy(STED)holds great potential in biological science applications,especially in studying nanoscale subcellular structures.However,multi-color STED imaging in live-cell remains chal...Stimulated emission depletion microscopy(STED)holds great potential in biological science applications,especially in studying nanoscale subcellular structures.However,multi-color STED imaging in live-cell remains challenging due to the limited excitation wavelengths and large amount of laser radiation.Here,we develop a multiplexed live-cell STED method to observe more structures simultaneously with limited photo-bleaching and photo-cytotoxicity.By separating live-cell fluorescent probes with similar spectral properties using phasor analysis,our method enables five-color live-cell STED imaging and reveals long-term interactions between different subcellular structures.The results here provide an avenue for understanding the complex and delicate interactome of subcellular structures in live-cell.展开更多
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a top...The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.展开更多
Cellular mechanotransduction characterized by the transformation of mechanical stimuli into biochemical signals,represents a pivotal and complex process underpinning a multitude of cellular functionalities.This proces...Cellular mechanotransduction characterized by the transformation of mechanical stimuli into biochemical signals,represents a pivotal and complex process underpinning a multitude of cellular functionalities.This process is integral to diverse biological phenomena,including embryonic development,cell migration,tissue regeneration,and disease pathology,particularly in the context of cancer metastasis and cardiovascular diseases.Despite the profound biological and clinical significance of mechanotransduction,our understanding of this complex process remains incomplete.The recent development of advanced optical techniques enables in-situ force measurement and subcellular manipulation from the outer cell membrane to the organelles inside a cell.In this review,we delved into the current state-of-the-art techniques utilized to probe cellular mechanobiology,their principles,applications,and limitations.We mainly examined optical methodologies to quantitatively measure the mechanical properties of cells during intracellular transport,cell adhesion,and migration.We provided an introductory overview of various conventional and optical-based techniques for probing cellular mechanics.These techniques have provided into the dynamics of mechanobiology,their potential to unravel mechanistic intricacies and implications for therapeutic intervention.展开更多
Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integ...Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish(Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.展开更多
BACKGROUND:Human CD8 + CD28 - T-suppressor(Ts) cells have been considered to indicate a reduced need for immunosuppression in pediatric liver-intestine transplant recipients and recipients of deceased heart-kidney tra...BACKGROUND:Human CD8 + CD28 - T-suppressor(Ts) cells have been considered to indicate a reduced need for immunosuppression in pediatric liver-intestine transplant recipients and recipients of deceased heart-kidney transplants.However,in adult-to-adult living donor liver transplantation(A-A LDLT)little information is available and the clinical significance is still unknown. METHODS:Flow cytometry was used to detect the population of CD8+CD28 -Ts cells present in peripheral blood in A-A LDLT recipients(n=31),patients with end- stage liver disease(n=24)and healthy controls(n=19). Meanwhile,we tested the graft function and trough levels of immunosuppression in recipients.The clinical and follow- up data of 31 transplant recipients were analyzed. RESULTS:Compared with diseased controls(P=0.007) and healthy individuals(P=0.000),a notable expansion of CD8 + CD28 - Ts cells was found in recipients of A-A LDLT.This was associated with graft function,levels of immunosuppression and rejection episodes. CONCLUSIONS:To monitor the CD8 + CD28 - Ts cells levels is important to evaluate the immune state of recipients. Meanwhile,it is also important to promote expansion of CD8+CD28 -Ts cells in recipients of A-A LDLT,not only to sustain good graft function and decrease the dosage of immunosuppressants,but also to reduce the occurrence of rejection.展开更多
Physiologic roles of PTHrP remain elusive,but some have implied a role of growth and differentiation.Since intestinal epithelial cell show orderly growth and differentiation as they proliferate in the crypt and migrat...Physiologic roles of PTHrP remain elusive,but some have implied a role of growth and differentiation.Since intestinal epithelial cell show orderly growth and differentiation as they proliferate in the crypt and migrate to the villus tip,we asked whether they might exhibit differences in expression of mRNA for either PTHrP or its receptor.AT/PCR was used to generate cDNA probe for either PTHrP or the PTH/PTHrP receptor.Total RNA was prepared from epithelial cells isolated form various region of rat gut and epithelial cell lines.derived from rat crypt(IEC-6)and human colon(LoVo)as wellas cell fractions taken sequentially along the villus-crypt axis of rat jejunum.The 1.6kb mRNA for PTHrP was detected in epithelia from all regions of rat gut(duodenum,jejunum,ileum,colon),in all fractions along the iejnnal villus tipcrypt axis,and in both cell lines.Likewise mRNA for the PTH/PTHrP receptor also was expressed,lbeit at lower level,in all regions,along the villus,and in both cell lines. Interestingly,while in kidney(positive control)two transcripts(1.5 & 2.4 kb)were detected as other reported,in intestinal epithelia and cell lines,only 1.skb transcript was evident.We conclude that mRNAs for both PTHrP and PTH/PTHrP receptor are expressed throughout the gut and that no obvious pattern of expre.ssion emerges from examining epithelia or cell lines representing different stage of differentiation. The role of PTHrP in gut epithelia remains to be defined.展开更多
The aim of this study is to introduce live cell imaging and its applications for the evaluation of the effects of fucoidan, a fucose-enriched sulfated polysaccharide, on the proliferation of cultured cells in vitro. I...The aim of this study is to introduce live cell imaging and its applications for the evaluation of the effects of fucoidan, a fucose-enriched sulfated polysaccharide, on the proliferation of cultured cells in vitro. In this study, long-term time- lapse observation (87 h) of the effects of fucoidan was conducted using BioStation CT, an integrated cell culture observation system. In contrast, the effects of heparin, which has a similar structure to fucoidan, were observed to distinguish the differences between the two chemicals. At the same time, the viability of the floating cells detached by fucoidan in the medium was measured by culturing them again in the absence of fucoidan. Finally, total internal reflection fluorescence microscopy (TIRF) was used to confirm when the detachment of the cells by fucoidan occurred. The results indicate that the inhibitory effects of fucoidan on the proliferation of cells are dose-dependent (from 0.125 mg/ml to 1.0 mg/ml). Fucoidan also causes cell detachment without killing all the cells within 24 hours. The cell detachment did not occur until after half an hour, as observed under the TIRF microscope. Combined with our previous study, the findings suggest that the inhibition of calcium responses by fucoidan may be one of the mechanisms underlying its inhibition of cell proliferation, which is responsible for the death of cancer cells. Cell proliferation can be visualized in the real time and the images can provide important information regarding when and how the cells grow and proliferate.展开更多
<strong>Aims and Objectives: </strong>To understand the lived experience and needs of patients with sickle cell disease during and two weeks after their crisis and identify the obstacles faced by patients ...<strong>Aims and Objectives: </strong>To understand the lived experience and needs of patients with sickle cell disease during and two weeks after their crisis and identify the obstacles faced by patients while they are in the hospital. <strong>Background:</strong> Although there is no specific data of a number of affected individuals with sickle cell disease in Oman based on their age, the majority of the Omani population are youth. This category of the population is either in their high school or working in the governmental or private sector in the country. When the most productive category of the population are getting frequently absent due to sickle cell crisis and complication of sickle cell crisis from their work, this leads to huge financial and human resource burden. <strong>Design:</strong> Phenomenology. <strong>Method:</strong> This qualitative descriptive research was conducted using face-to-face interviews based on an interview protocol. The interview protocol was developed by the authors based on a framework called domains of well-being. Twenty adult patients have been recruited for the interview after meeting inclusion criteria and were asked about their well-being and lived experience during sickle cell crisis. Authors used SRQR checklist in reporting the study. <strong>Results:</strong> Thirteen themes were identified related to patients’ lived experience and their well-being during sickle cell crisis. Patients reported physical, emotional, social, and spiritual alteration. Major themes that emerged are communication, medical team interpretation of genuine pain, Emotional disturbance during the crisis, What does this study contribute to the wider global clinical community? Nurses and doctors should use therapeutic communication when dealing with sickle cell patients. Nurses should establish rapport and trust with patients. In each health care setting, there should be a social worker to deal with patients with chronic illness social relationships between the patient, family and friends, post-discharge status, spiritual and Islamic activities, and physical abilities. <strong>Conclusion:</strong> Participants’ physical and psychological statuses were mostly affected. Moreover, participants experienced extreme emotional disturbance during a painful crisis. However, it was not well understood why participants experienced post sickle cell crisis symptoms which need to be further investigated. <strong>Relevance to Clinical Practice:</strong> Understanding the lived experience of sickle cell patients may help improve nursing and medical care provided to them and enhance better outcomes for patients. These findings made the nurses and physicians plan a strategy of treating sickle cell patients using a holistic approach.展开更多
<strong>Introduction</strong>.<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The molecular biological mechanism ...<strong>Introduction</strong>.<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The molecular biological mechanism of the increased incidence of the various types of cancer in obesity or type 2 diabetes in rodents or humans has largely been resolved in recent years. By contrast, the molecular biological mechanism of the decreased, not increased, incidence of the various types of cancer in the homozygous long-lived Ames dwarf mice still remains unresolved. </span><b><span style="font-family:Verdana;">Objective.</span></b><span style="font-family:Verdana;"> The first objective of the present study was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the increase, not decrease, in the expression of p27Kip1, a cell cycle repressor protein. The second objective was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the decrease, not increase, in the levels of glucose or insulin. </span><b><span style="font-family:Verdana;">Methods.</span></b><span style="font-family:Verdana;"> To achieve these objectives, we first performed western immunoblot analysis of the hepatic expression of p27Kip1 protein. We then performed, using a human breast cancer cell line </span><i><span style="font-family:Verdana;">in</span></i> <i><span style="font-family:Verdana;">vitro</span></i><span style="font-family:Verdana;">, the luciferase reporter plasmid assay to determine whether the translation initiation activity of the p27Kip1 mRNA is increased when the concentrations of either glucose or insulin are decreased. </span><b><span style="font-family:Verdana;">Results and Conclusion. </span></b><span style="font-family:Verdana;">The results of the first objective indicated that the hepatic expression of p27Kip1 protein was up-regulated in the homozygous long-lived Ames dwarf mice as expected. We also found that the lower concentrations of glucose or insulin increased the translation initiation activity of the p27Kip1 mRNA.</span></span></span></span>展开更多
Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imag...Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.展开更多
In recent years, stem cells have been a focal point in research designed to evaluate the efficacy of ophthalmologic therapies, specifically those for corneal conditions. The corneal epithelium is one of the few region...In recent years, stem cells have been a focal point in research designed to evaluate the efficacy of ophthalmologic therapies, specifically those for corneal conditions. The corneal epithelium is one of the few regions of the body that maintains itself using a residual stem cell population within the adjacent limbus. Stem cell movement has additionally captivated the minds of researchers due to its potential application in different body regions. The cornea is a viable model for varying methods to track stem cell migratory patterns, such as lineage tracing and live imaging from the limbus. These developments have the potential to pave the way for future therapies designed to ensure the continuous regeneration of the corneal epithelium following injury via the limbal stem cell niche. This literature review aims to analyze the various methods of imaging used to understand the limbal stem cell niche and possible future directions that might be useful to consider for the better treatment and prevention of disorders of the cornea and corneal epithelium. .展开更多
Fe-based single-atomic site catalysts(SASCs),with the natural metalloproteases-like active site structure,have attracted widespread attention in biocatalysis and biosensing.Precisely,controlling the isolated single-at...Fe-based single-atomic site catalysts(SASCs),with the natural metalloproteases-like active site structure,have attracted widespread attention in biocatalysis and biosensing.Precisely,controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’performance.In this work,we use a facile ion-imprinting method(IIM)to synthesize isolated Fe-N-C single-atomic site catalysts(IIM-Fe-SASC).With this method,the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites.The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references.Due to its excellent properties,IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide(H_(2)O_(2)).Using IIM-Fe-SASC as the nanoprobe,in situ detection of H_(2)O_(2)generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity.This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H_(2)O_(2)detection.展开更多
A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstr...A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.展开更多
基金supported by the following grants:National Natural Science Foundation of China(62125504,62361166631)STI 2030-Major Projects(2021ZD0200401)+1 种基金the Fundamental Research Funds for the Central Universities(226-2022-00201)the Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Stimulated emission depletion microscopy(STED)holds great potential in biological science applications,especially in studying nanoscale subcellular structures.However,multi-color STED imaging in live-cell remains challenging due to the limited excitation wavelengths and large amount of laser radiation.Here,we develop a multiplexed live-cell STED method to observe more structures simultaneously with limited photo-bleaching and photo-cytotoxicity.By separating live-cell fluorescent probes with similar spectral properties using phasor analysis,our method enables five-color live-cell STED imaging and reveals long-term interactions between different subcellular structures.The results here provide an avenue for understanding the complex and delicate interactome of subcellular structures in live-cell.
基金supported by the National Natural Science Foundation of China (52373161,51973217)Jilin Province Science and Technology Development Program (20200201330JC, 20200201075JC, JJKH20201029KJ)The First Hospital of Jilin University Cross Disciplinary Program (2022YYGFZJC002)。
文摘The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
基金the funding from Start-up Fundings of Ocean University of China(862401013154 and 862401013155)Laboratory for Marine Drugs and Bioproducts Qingdao Marine Science and Technology Center(LMDBCXRC202401 and LMDBCXRC202402)+1 种基金Taishan Scholar Youth Expert Program of Shandong Province(tsqn202306102 and tsqn202312105)Shandong Provincial Overseas Excellent Young Scholar Program(2024HWYQ-042 and 2024HWYQ-043)for supporting this work.
文摘Cellular mechanotransduction characterized by the transformation of mechanical stimuli into biochemical signals,represents a pivotal and complex process underpinning a multitude of cellular functionalities.This process is integral to diverse biological phenomena,including embryonic development,cell migration,tissue regeneration,and disease pathology,particularly in the context of cancer metastasis and cardiovascular diseases.Despite the profound biological and clinical significance of mechanotransduction,our understanding of this complex process remains incomplete.The recent development of advanced optical techniques enables in-situ force measurement and subcellular manipulation from the outer cell membrane to the organelles inside a cell.In this review,we delved into the current state-of-the-art techniques utilized to probe cellular mechanobiology,their principles,applications,and limitations.We mainly examined optical methodologies to quantitatively measure the mechanical properties of cells during intracellular transport,cell adhesion,and migration.We provided an introductory overview of various conventional and optical-based techniques for probing cellular mechanics.These techniques have provided into the dynamics of mechanobiology,their potential to unravel mechanistic intricacies and implications for therapeutic intervention.
基金supported by NIH-NEI grants to DRH(R01-EY018417,R01-EY024519)the Center for Zebrafish Research,University of Notre Dame,USA
文摘Sensing and responding to our environment requires functional neurons that act in concert. Neuronal cell loss resulting from degenerative diseases cannot be replaced in humans, causing a functional impairment to integrate and/or respond to sensory cues. In contrast, zebrafish(Danio rerio) possess an endogenous capacity to regenerate lost neurons. Here, we will focus on the processes that lead to neuronal regeneration in the zebrafish retina. Dying retinal neurons release a damage signal, tumor necrosis factor α, which induces the resident radial glia, the Müller glia, to reprogram and re-enter the cell cycle. The Müller glia divide asymmetrically to produce a Müller glia that exits the cell cycle and a neuronal progenitor cell. The arising neuronal progenitor cells undergo several rounds of cell divisions before they migrate to the site of damage to differentiate into the neuronal cell types that were lost. Molecular and immunohistochemical studies have predominantly provided insight into the mechanisms that regulate retinal regeneration. However, many processes during retinal regeneration are dynamic and require live-cell imaging to fully discern the underlying mechanisms. Recently, a multiphoton imaging approach of adult zebrafish retinal cultures was developed. We will discuss the use of live-cell imaging, the currently available tools and those that need to be developed to advance our knowledge on major open questions in the field of retinal regeneration.
基金supported by grants from the National Natural Science Foundation of China(No.30772124)the Doctoral Fund of the Ministry of Education of China(No.20070610147).
文摘BACKGROUND:Human CD8 + CD28 - T-suppressor(Ts) cells have been considered to indicate a reduced need for immunosuppression in pediatric liver-intestine transplant recipients and recipients of deceased heart-kidney transplants.However,in adult-to-adult living donor liver transplantation(A-A LDLT)little information is available and the clinical significance is still unknown. METHODS:Flow cytometry was used to detect the population of CD8+CD28 -Ts cells present in peripheral blood in A-A LDLT recipients(n=31),patients with end- stage liver disease(n=24)and healthy controls(n=19). Meanwhile,we tested the graft function and trough levels of immunosuppression in recipients.The clinical and follow- up data of 31 transplant recipients were analyzed. RESULTS:Compared with diseased controls(P=0.007) and healthy individuals(P=0.000),a notable expansion of CD8 + CD28 - Ts cells was found in recipients of A-A LDLT.This was associated with graft function,levels of immunosuppression and rejection episodes. CONCLUSIONS:To monitor the CD8 + CD28 - Ts cells levels is important to evaluate the immune state of recipients. Meanwhile,it is also important to promote expansion of CD8+CD28 -Ts cells in recipients of A-A LDLT,not only to sustain good graft function and decrease the dosage of immunosuppressants,but also to reduce the occurrence of rejection.
文摘Physiologic roles of PTHrP remain elusive,but some have implied a role of growth and differentiation.Since intestinal epithelial cell show orderly growth and differentiation as they proliferate in the crypt and migrate to the villus tip,we asked whether they might exhibit differences in expression of mRNA for either PTHrP or its receptor.AT/PCR was used to generate cDNA probe for either PTHrP or the PTH/PTHrP receptor.Total RNA was prepared from epithelial cells isolated form various region of rat gut and epithelial cell lines.derived from rat crypt(IEC-6)and human colon(LoVo)as wellas cell fractions taken sequentially along the villus-crypt axis of rat jejunum.The 1.6kb mRNA for PTHrP was detected in epithelia from all regions of rat gut(duodenum,jejunum,ileum,colon),in all fractions along the iejnnal villus tipcrypt axis,and in both cell lines.Likewise mRNA for the PTH/PTHrP receptor also was expressed,lbeit at lower level,in all regions,along the villus,and in both cell lines. Interestingly,while in kidney(positive control)two transcripts(1.5 & 2.4 kb)were detected as other reported,in intestinal epithelia and cell lines,only 1.skb transcript was evident.We conclude that mRNAs for both PTHrP and PTH/PTHrP receptor are expressed throughout the gut and that no obvious pattern of expre.ssion emerges from examining epithelia or cell lines representing different stage of differentiation. The role of PTHrP in gut epithelia remains to be defined.
文摘The aim of this study is to introduce live cell imaging and its applications for the evaluation of the effects of fucoidan, a fucose-enriched sulfated polysaccharide, on the proliferation of cultured cells in vitro. In this study, long-term time- lapse observation (87 h) of the effects of fucoidan was conducted using BioStation CT, an integrated cell culture observation system. In contrast, the effects of heparin, which has a similar structure to fucoidan, were observed to distinguish the differences between the two chemicals. At the same time, the viability of the floating cells detached by fucoidan in the medium was measured by culturing them again in the absence of fucoidan. Finally, total internal reflection fluorescence microscopy (TIRF) was used to confirm when the detachment of the cells by fucoidan occurred. The results indicate that the inhibitory effects of fucoidan on the proliferation of cells are dose-dependent (from 0.125 mg/ml to 1.0 mg/ml). Fucoidan also causes cell detachment without killing all the cells within 24 hours. The cell detachment did not occur until after half an hour, as observed under the TIRF microscope. Combined with our previous study, the findings suggest that the inhibition of calcium responses by fucoidan may be one of the mechanisms underlying its inhibition of cell proliferation, which is responsible for the death of cancer cells. Cell proliferation can be visualized in the real time and the images can provide important information regarding when and how the cells grow and proliferate.
文摘<strong>Aims and Objectives: </strong>To understand the lived experience and needs of patients with sickle cell disease during and two weeks after their crisis and identify the obstacles faced by patients while they are in the hospital. <strong>Background:</strong> Although there is no specific data of a number of affected individuals with sickle cell disease in Oman based on their age, the majority of the Omani population are youth. This category of the population is either in their high school or working in the governmental or private sector in the country. When the most productive category of the population are getting frequently absent due to sickle cell crisis and complication of sickle cell crisis from their work, this leads to huge financial and human resource burden. <strong>Design:</strong> Phenomenology. <strong>Method:</strong> This qualitative descriptive research was conducted using face-to-face interviews based on an interview protocol. The interview protocol was developed by the authors based on a framework called domains of well-being. Twenty adult patients have been recruited for the interview after meeting inclusion criteria and were asked about their well-being and lived experience during sickle cell crisis. Authors used SRQR checklist in reporting the study. <strong>Results:</strong> Thirteen themes were identified related to patients’ lived experience and their well-being during sickle cell crisis. Patients reported physical, emotional, social, and spiritual alteration. Major themes that emerged are communication, medical team interpretation of genuine pain, Emotional disturbance during the crisis, What does this study contribute to the wider global clinical community? Nurses and doctors should use therapeutic communication when dealing with sickle cell patients. Nurses should establish rapport and trust with patients. In each health care setting, there should be a social worker to deal with patients with chronic illness social relationships between the patient, family and friends, post-discharge status, spiritual and Islamic activities, and physical abilities. <strong>Conclusion:</strong> Participants’ physical and psychological statuses were mostly affected. Moreover, participants experienced extreme emotional disturbance during a painful crisis. However, it was not well understood why participants experienced post sickle cell crisis symptoms which need to be further investigated. <strong>Relevance to Clinical Practice:</strong> Understanding the lived experience of sickle cell patients may help improve nursing and medical care provided to them and enhance better outcomes for patients. These findings made the nurses and physicians plan a strategy of treating sickle cell patients using a holistic approach.
文摘<strong>Introduction</strong>.<span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> The molecular biological mechanism of the increased incidence of the various types of cancer in obesity or type 2 diabetes in rodents or humans has largely been resolved in recent years. By contrast, the molecular biological mechanism of the decreased, not increased, incidence of the various types of cancer in the homozygous long-lived Ames dwarf mice still remains unresolved. </span><b><span style="font-family:Verdana;">Objective.</span></b><span style="font-family:Verdana;"> The first objective of the present study was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the increase, not decrease, in the expression of p27Kip1, a cell cycle repressor protein. The second objective was to investigate whether the decrease in the incidence of cancer in the homozygous long-lived Ames dwarf mice is due to the decrease, not increase, in the levels of glucose or insulin. </span><b><span style="font-family:Verdana;">Methods.</span></b><span style="font-family:Verdana;"> To achieve these objectives, we first performed western immunoblot analysis of the hepatic expression of p27Kip1 protein. We then performed, using a human breast cancer cell line </span><i><span style="font-family:Verdana;">in</span></i> <i><span style="font-family:Verdana;">vitro</span></i><span style="font-family:Verdana;">, the luciferase reporter plasmid assay to determine whether the translation initiation activity of the p27Kip1 mRNA is increased when the concentrations of either glucose or insulin are decreased. </span><b><span style="font-family:Verdana;">Results and Conclusion. </span></b><span style="font-family:Verdana;">The results of the first objective indicated that the hepatic expression of p27Kip1 protein was up-regulated in the homozygous long-lived Ames dwarf mice as expected. We also found that the lower concentrations of glucose or insulin increased the translation initiation activity of the p27Kip1 mRNA.</span></span></span></span>
文摘Aim To fuse the fluorescence image and transmission image of a cell into a single image containing more information than any of the individual image. Methods Image fusion technology was applied to biological cell imaging processing. It could match the images and improve the confidence and spatial resolution of the images. Using two algorithms, double thresholds algorithm and denoising algorithm based on wavelet transform,the fluorescence image and transmission image of a Cell were merged into a composite image. Results and Conclusion The position of fluorescence and the structure of cell can be displyed in the composite image. The signal-to-noise ratio of the exultant image is improved to a large extent. The algorithms are not only useful to investigate the fluorescence and transmission images, but also suitable to observing two or more fluoascent label proes in a single cell.
文摘In recent years, stem cells have been a focal point in research designed to evaluate the efficacy of ophthalmologic therapies, specifically those for corneal conditions. The corneal epithelium is one of the few regions of the body that maintains itself using a residual stem cell population within the adjacent limbus. Stem cell movement has additionally captivated the minds of researchers due to its potential application in different body regions. The cornea is a viable model for varying methods to track stem cell migratory patterns, such as lineage tracing and live imaging from the limbus. These developments have the potential to pave the way for future therapies designed to ensure the continuous regeneration of the corneal epithelium following injury via the limbal stem cell niche. This literature review aims to analyze the various methods of imaging used to understand the limbal stem cell niche and possible future directions that might be useful to consider for the better treatment and prevention of disorders of the cornea and corneal epithelium. .
基金This work was supported by a WSU startup fund.XAS measurements were done at beamline 12-BM of the Advanced Photon Source(APS),which is a User Facility operated for the U.S.Department of Energy Office of Science by Argonne National Laboratory under Contract DE-AC02-06CH11357.
文摘Fe-based single-atomic site catalysts(SASCs),with the natural metalloproteases-like active site structure,have attracted widespread attention in biocatalysis and biosensing.Precisely,controlling the isolated single-atom Fe-N-C active site structure is crucial to improve the SASCs’performance.In this work,we use a facile ion-imprinting method(IIM)to synthesize isolated Fe-N-C single-atomic site catalysts(IIM-Fe-SASC).With this method,the ion-imprinting process can precisely control ion at the atomic level and form numerous well-defined single-atomic Fe-N-C sites.The IIM-Fe-SASC shows better peroxidase-like activities than that of non-imprinted references.Due to its excellent properties,IIM-Fe-SASC is an ideal nanoprobe used in the colorimetric biosensing of hydrogen peroxide(H_(2)O_(2)).Using IIM-Fe-SASC as the nanoprobe,in situ detection of H_(2)O_(2)generated from MDA-MB-231 cells has been successfully demonstrated with satisfactory sensitivity and specificity.This work opens a novel and easy route in designing advanced SASC and provides a sensitive tool for intracellular H_(2)O_(2)detection.
文摘A microfabricated electrical impedance spectroscopy (EIS) chip with microelectrodes was developed.The substrate and the electrodes of the chip were made of glass and gold,respectively.The experimental results demonstrated that the EIS-chip could distinguish different solutions (physiological saline,culture medium,living cell suspension etc.) by scanning from 10Hz to 45kHz.A 6-element circuit model was used for fitting the real part and the imaginary part admittance curves of the living cell suspension.An actual circuit was also built and tested to verify the 6-element circuit model proposed.The micro-EIS chip has several advantages including the use of small sample volumes,high resolution and ease of operation.It shows good application prospects in the areas of cellular electrophysioiogy,drug screening and bio-sensors etc.