Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and sus...Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and susceptible to subjective errors.To address the aforementioned issues,we propose an automatic segmentation model for liver and tumors called Res2Swin Unet,which is based on the Unet architecture.The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation,respectively.Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections,while Swin Transformer captures long-range dependencies and models the input globally.And the model uses deep supervision and a hybrid loss function for faster convergence.On the LiTS2017 dataset,it achieves better segmentation performance than other models,with an average Dice coefficient of 97.0%for liver segmentation and 81.2%for tumor segmentation.展开更多
In the recent days, the segmentation of Liver Tumor (LT) has beendemanding and challenging. The process of segmenting the liver and accuratelyspotting the tumor is demanding due to the diversity of shape, texture, and...In the recent days, the segmentation of Liver Tumor (LT) has beendemanding and challenging. The process of segmenting the liver and accuratelyspotting the tumor is demanding due to the diversity of shape, texture, and intensity of the liver image. The intensity similarities of the neighboring organs of theliver create difficulties during liver segmentation. The manual segmentation doesnot provide an accurate segmentation because the results provided by differentmedical experts can vary. Also, this manual technique requires a large numberof image slices and time for segmentation. To solve these issues, the Fully Automatic Segmentation (FAS) technique is proposed. In this proposed Multi-AngleTexture Active Contour Model (MAT-ACM) method, the input Computed Tomography (CT) image is preprocessed by Contrast Enhancement (CE) with Non-Linear Mapping Technique (NLMT), in which the liver is differentiated from itsneighbouring soft tissues with related strength. Then, the filtered images are givenas the input to Adaptive Edge Modeling (AEM) with Canny Edge Detection(CED) technique, which segments the Liver Region (LR) from the given CTimages. An AEM with a CED model is implemented, which increases the convergence speed of the iterative process for decreasing the Volumetric Overlap Error(VOE) is 6.92% rates when compared with the traditional Segmentation Techniques (ST). Finally, the Liver Tumor Segmentation (LTS) is developed by applyingthe MAT-ACM, which accurately segments the LR from the segmented LRs. Theevaluation of the proposed method is compared with the existing LTS methodsusing various performance measures to prove the superiority of the proposedMAT-ACM method.展开更多
Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive ...Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive histogram equalization approach(CLAHE)is applied as preprocessing,in order to enhance the visual quality of the images that helps in better segmentation.Then,adaptively regularized kernel-based fuzzy C means(ARKFCM)is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.Findings-The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost.The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient,dice coefficient,precision,Matthews correlation coefficient,f-score and accuracy.The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value,which is better than the existing algorithms.Practical implications-From the experimental analysis,the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm.However,the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.Originality/value-The image preprocessing is carried out using CLAHE algorithm.The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm.In this research,the proposed algorithm has advantages such as independence of clustering parameters,robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.展开更多
文摘Liver cancer has the second highest incidence rate among all types of malignant tumors,and currently,its diagnosis heavily depends on doctors’manual labeling of CT scan images,a process that is time-consuming and susceptible to subjective errors.To address the aforementioned issues,we propose an automatic segmentation model for liver and tumors called Res2Swin Unet,which is based on the Unet architecture.The model combines Attention-Res2 and Swin Transformer modules for liver and tumor segmentation,respectively.Attention-Res2 merges multiple feature map parts with an Attention gate via skip connections,while Swin Transformer captures long-range dependencies and models the input globally.And the model uses deep supervision and a hybrid loss function for faster convergence.On the LiTS2017 dataset,it achieves better segmentation performance than other models,with an average Dice coefficient of 97.0%for liver segmentation and 81.2%for tumor segmentation.
基金funded by Dirección General de Investigaciones of Universidad Santiago de Cali under call No.01-2021.
文摘In the recent days, the segmentation of Liver Tumor (LT) has beendemanding and challenging. The process of segmenting the liver and accuratelyspotting the tumor is demanding due to the diversity of shape, texture, and intensity of the liver image. The intensity similarities of the neighboring organs of theliver create difficulties during liver segmentation. The manual segmentation doesnot provide an accurate segmentation because the results provided by differentmedical experts can vary. Also, this manual technique requires a large numberof image slices and time for segmentation. To solve these issues, the Fully Automatic Segmentation (FAS) technique is proposed. In this proposed Multi-AngleTexture Active Contour Model (MAT-ACM) method, the input Computed Tomography (CT) image is preprocessed by Contrast Enhancement (CE) with Non-Linear Mapping Technique (NLMT), in which the liver is differentiated from itsneighbouring soft tissues with related strength. Then, the filtered images are givenas the input to Adaptive Edge Modeling (AEM) with Canny Edge Detection(CED) technique, which segments the Liver Region (LR) from the given CTimages. An AEM with a CED model is implemented, which increases the convergence speed of the iterative process for decreasing the Volumetric Overlap Error(VOE) is 6.92% rates when compared with the traditional Segmentation Techniques (ST). Finally, the Liver Tumor Segmentation (LTS) is developed by applyingthe MAT-ACM, which accurately segments the LR from the segmented LRs. Theevaluation of the proposed method is compared with the existing LTS methodsusing various performance measures to prove the superiority of the proposedMAT-ACM method.
文摘Purpose-The purpose of this study is to develop a hybrid algorithm for segmenting tumor from ultrasound images of the liver.Design/methodology/approach-After collecting the ultrasound images,contrast-limited adaptive histogram equalization approach(CLAHE)is applied as preprocessing,in order to enhance the visual quality of the images that helps in better segmentation.Then,adaptively regularized kernel-based fuzzy C means(ARKFCM)is used to segment tumor from the enhanced image along with local ternary pattern combined with selective level set approaches.Findings-The proposed segmentation algorithm precisely segments the tumor portions from the enhanced images with lower computation cost.The proposed segmentation algorithm is compared with the existing algorithms and ground truth values in terms of Jaccard coefficient,dice coefficient,precision,Matthews correlation coefficient,f-score and accuracy.The experimental analysis shows that the proposed algorithm achieved 99.18% of accuracy and 92.17% of f-score value,which is better than the existing algorithms.Practical implications-From the experimental analysis,the proposed ARKFCM with enhanced level set algorithm obtained better performance in ultrasound liver tumor segmentation related to graph-based algorithm.However,the proposed algorithm showed 3.11% improvement in dice coefficient compared to graph-based algorithm.Originality/value-The image preprocessing is carried out using CLAHE algorithm.The preprocessed image is segmented by employing selective level set model and Local Ternary Pattern in ARKFCM algorithm.In this research,the proposed algorithm has advantages such as independence of clustering parameters,robustness in preserving the image details and optimal in finding the threshold value that effectively reduces the computational cost.