For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of sol...For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.展开更多
Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteri...Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.展开更多
Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characteriz...Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.展开更多
The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined ...The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.展开更多
The photo-controlled/living radical polymerization of methacrylic acid (MAA) was performed at room temperature by irradiation with a high-pressure mercury lamp using azo initiators and 4-methoxy-2,2,6,6-tetramethylpip...The photo-controlled/living radical polymerization of methacrylic acid (MAA) was performed at room temperature by irradiation with a high-pressure mercury lamp using azo initiators and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate (tBuS) as the accelerator. Whereas the bulk polymerization yielded polymers with a bimodal molecular weight distribution in both the absence and presence of tBuS, the solution polymerization in methanol produced unimodal polymers with the molecular weight distribution of 2.0 - 2.3 in the presence of tBuS. The molecular weight distribution of the resulting poly (MAA) decreased with an in- crease in tBuS. The dilution of the monomer concentration also reduced the molecular weight distribution. The use of the initiator with a low 10-h half-life temperature also effectively controlled the molecular weight. The livingness of the polymerization was confirmed by obtaining linear increases in the first-order conversion versus time, the molecular weight versus the conversion, and the molecular weight versus the reciprocal of the initiator concentration.展开更多
A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living ra...A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living radical polymerization of the inimer was studied and the hyperbranched macromolecules containing ester linkages on their backbone were prepared. All the polymerization products were characterized by 1H NMR. The polymerization degree and the branching parameter were calculated based on the 1H NMR spectra. It has been shown that this inimer exhibits a very distinctive polymerization behavior. Similar to step-growth polymerization, the polymerization degree of the products formed increased exponentially during the early stage of the polymerization, and then the increasing rate slowed down. However, the inimer remained present throughout the polymerization consistent with conventional free radical polymerization. Also, if much longer polymerization time was used, the polymerization system would become gel due to the crosslinking reaction derived from radical-radical recombination. As a result of the unequal reactivity of -CH2Cl and >CHCl, an almost linear product was obtained at a molar ratio of bipy to inimer=0.05, while a relatively high ratio of bipy to inimer 1 favored the formation of the branched structure. The macromolecules formed at a high ratio of bipy to inimer 1 exhibited an excellent solubility in organic solvents such as acetone.展开更多
Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as in...Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator. Then the PS-CH2CH2OCOCCl3 (PS-Cl-3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl-3) was used as the macroinitiator in the polymerization of(meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl-3 and the P(S-b-MMA) were identified by FTIR and H-1-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.展开更多
Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT was...Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).展开更多
Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylaceta...Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylacetamide(DMAc). Atomic force microscopy (AFM) was employed to observe the microstructure of the composite film. The thermal property was investigated by TGA and mechanical property was characterized by DXLL-1000 electromechanical material testing machine. The results showed that the breaking strength of the film containing 0.5% ZnO was great enhanced. The average size of ZnO particles was below 100 nm. The introduction of ZnO as nano filler in PSA react as UV shield effect and make the composite mechanical property improved.展开更多
Conductive polymer composites based on crystalline polymer matrix have been prepared by using an in-situ polymerization process of pyrrole in amorphous poly (ethylene terephthalate) (PET) film. The DSC and WAXD me...Conductive polymer composites based on crystalline polymer matrix have been prepared by using an in-situ polymerization process of pyrrole in amorphous poly (ethylene terephthalate) (PET) film. The DSC and WAXD measurement and SEM observation show that liquid-induced crystallization of PET matrix has occurred during the preparation of composite films. Depending upon the equilibrium degree of swelling and crystallinity, the limited depth of penetration of pyrrole molecules results in a skin-core structure of the composite film. The skin layer containing charge transfer intercalated polypyrrole has a surface resistance of 3.5×10;Ω. Rigid and heat-resistant polypyrrole molecules formed in PET film increase the tensile modulus and, especially, the rigidity of PET at elevated temperatures. However, they decrease the tensile strength and elongation at break, and impair the thermal ductility of PET.展开更多
Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic s...Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.展开更多
The acceleration mechanisms by a photosensitive onium salt for the nitroxide-mediated photocontrolled/living radical polymerization (photo-NMP) were determined. The photo-NMP of methyl methacrylate was performed by ir...The acceleration mechanisms by a photosensitive onium salt for the nitroxide-mediated photocontrolled/living radical polymerization (photo-NMP) were determined. The photo-NMP of methyl methacrylate was performed by irradiation at room temperature using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator and (2RS, 2’RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator. The polymerization was accelerated in the presence of (4-tertbutylphenyl)diphenylsulfonium triflate (tBuS) to produce a polymer with a molecular weight distribution as narrow as the polymerization in its absence. (±)-Camphor-10-sulfonic acid or 2-fluoro-1-methylpyridinium p-toluenesulfonate had no effect on the polymerization speed, suggesting that tBuS did not serve as the photo-acid generator for the photo-NMP. It was found that the acceleration of the polymerization was based on the electron transfer from MTEMPO into tBuS in the excited state to temporarily generate a free radical propagating chain end and an oxoaminium salt (OAS), the one-electron oxidant of MTEMPO. This electron transfer mechanism was verified on the basis of the fact that the photo-NMP in the presence of tBuS was still accelerated by triphenylamine, the electron transfer inhibitor, to partly produce a polymer with an uncontrolled molecular weight. The formation of an uncontrolled molecular weight polymer indicated the generation of a free radical propagating chain end due to the deactivation of the OAS by the triphenylamine. It was deduced that tBuS served as the electron acceptor from MTEMPO in the excited state to temporarily produce a free radical propagating chain end along with OAS, resulting in the acceleration of the polymerization.展开更多
'Living'/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85...'Living'/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85℃. Thc numberaverage molecular weight (M_n) increases linearly with monomer conversion and the rate of polymerization is first order withrespect to monomer concentration. The M_w of PEMA ranges from 3900 to 17600 and the polydispersity indices are quitenarrow (1.09~1.22). The conversion can reach up to~100% and M_w of the polymers obtained is close to that designed. Thepolymerization mechanism belongs to the reverse atom transfer radical polymerization (ATRP). The polymer was end-functionalized by chlorine atom, which acts as a macroinitiator to proceed extension polymerization in the presence ofCuBr/bipy catalyst system via an ATRP process. The presence of ω-chlorine in the PEMA obtained was identified by ~1H-NMR spectrum.展开更多
A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diamin...A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diaminodiphenyl sulfone (DDS) and terephthaloyl chloride (TPC) in the common solvent N, N-Dimethyl- -acetamide (DMAc). Nano filler is a certain nano titanium oxide modified by silicon oxide (TMS), which plays the role of UV resistance additives. Properties of the novel composite materials were characterized by Atomic Force microscopy (AFM), thermal gravimetric Analysis (TGA) and Ultraviolet Spectroscopy. AFM had showed the sizes and distributions of TMS particles in the nanocomposite. Ultraviolet Spectroscopy for the nanocomposites showed a large absorption in UV band. TGA showed the decomposition temperature was increased over ten degrees with 0.5% wt TMS for this nanocomposite compared with pure PSA.展开更多
The poly(vinylpyridine)(PVP) based(co)polymers are of particular interest in materials science, due to their multifunctionality and diverse applications. So far, there is no report on the sequence-regulated copolymeri...The poly(vinylpyridine)(PVP) based(co)polymers are of particular interest in materials science, due to their multifunctionality and diverse applications. So far, there is no report on the sequence-regulated copolymerization of vinylpyridines(VPs) and methacrylate monomer in one-step manner yet. Here we designed and synthesized a series of guanidine phosphines as Lewis base(LB), which is combined with bulky organoaluminium to construct Lewis pairs(LPs) for polymerization of VPs. The living/controlled polymerization of 4-vinylpyridine(4-VP) or 2-vinylpyridine(2-VP) can be accomplished with remarkable efficiency by such Lewis pair polymerization(LPP), furnishing polymers with high molecular weight(up to 288 kg/mol) and narrow molecular weight distribution(as low as 1.17). Mechanistic studies reveal the interaction of LPs and formation of zwitterionic intermediates, providing solid evidences to support the proposed polymerization mechanism. More importantly, by simply adjusting the LA dosage, this LPP strategy realizes the unprecedented control over the sequence regulation of 2-VP-based copolymers from gradient to block in one-step manner, regardless of the monomer ratio, which greatly expands the versatility of the LPP.展开更多
Chemoselective,living/controlled polymerizations of allyl methacrylate(AMA) and vinyl methacrylate(VMA) with/without methyl methacrylate(MMA) by using the phosphonium ylide/organoaluminum based Lewis pairs(LPs) have b...Chemoselective,living/controlled polymerizations of allyl methacrylate(AMA) and vinyl methacrylate(VMA) with/without methyl methacrylate(MMA) by using the phosphonium ylide/organoaluminum based Lewis pairs(LPs) have been realized.The P-ylide-2/AIMe(BHT)_(2)(Pylide-2=Ph_(3)P=CHMe and BHT=2,6-iBu_(2)-4-MeC_(6)H_(2)O) was demonstrated to be superior by which homopolymers PAMAs(M_(n)=27.6-111.5kg/mol and ■=1.14-1.25) and PVMAs(M_(n)=28.4-78.4 kg/mol and ■=1.12-1.18) and block copolymers PMMA-b-PAMA,PAMA-b-PVMA,PAMA-bPMMA,PMMA-b-PAMA-b-PMMA,PAMA-b-PMMA-b-PAMA,and PAMA-b-PVMA-b-PAMA were synthesized.In the polymerizations,all of the monomers were reacted by the conjugated ester vinyl groups leaving intactly the nonconjugated acryloxy groups.The pendant acryloxy groups attached to the main chain enable further to post-functionalization by the AIBN-induced radical "thiol-ene" reaction using PhCH_(2)SH.The thiolether side group-containing polymers PAMA-SCH_(2)Ph and PAMA-SCH_(2)Ph-b-PMMA-b-PAMA-SCH_(2)Ph were thus prepared.展开更多
Traditional ring-opening metathesis polymerization(ROMP)reactions exhibit broad functional group compatibility and precise control over polymer architectures,albeit with non-biodegradable backbones.Recent progress has...Traditional ring-opening metathesis polymerization(ROMP)reactions exhibit broad functional group compatibility and precise control over polymer architectures,albeit with non-biodegradable backbones.Recent progress has resulted in a series of biodegradable ROMP products with diverse cleavable functional groups,yet the majority of the monomers display moderate to low ring strain,which restricts their living polymerization reactivity.In this study,a novel category of readily available 7-oxa-2,3-diazanorbornenes(ODAN)is presented,which exhibits the highest ring strain(22.8 kcal/mol)compared to existing degradable ROMP monomers.This trait endows ODAN with the ability to perform living polymerization reactions,generating narrowly dispersed homopolymers,block copolymers,and statistical copolymers with various cyclic olefin comonomers,thereby enabling precise control over distribution of the biodegradable functional groups.Additionally,the resultant polymers comprise directly connected allyl hemiaminal ether and urethane units,which are hydrolyzable at controllable rates.Thus,these well-defined,structure-tunable,and backbone-biodegradable ROMP polymers are applied as nanoetching materials and biodegradable delivery carriers.展开更多
Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl ...Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were charac-terized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation e ciency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.展开更多
Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden.Delivery of drug to particular parts of the anterior or posterior segment has been ...Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden.Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system.Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability(<5%).The designing of a novel approach for a safe,simple,and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem.Over the past decades,several novel approaches involving different strategies have been developed to improve the ocular delivery system.Among these,the ophthalmic in-situ gel has attained a great attention over the past few years.This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system.展开更多
Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodide- mediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN...Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodide- mediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate) as chain transfer agent, giving iodine atom ended star-shaped polystyrene with three arm chains, R(polystyrene)3. Secondly, tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent, and star-block copolymer, R(polystyrene-b-poly(tert-butyl acrylate))3 with controlled molecular weight was obtained. Finally, amphiphilic star-block copolymer, R(polystyrene-b-poly(acrylic acid))3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))3 under acidic condition.展开更多
基金financially supported by the National Natural Science Foundation of China(U21A20313,22222807)。
文摘For living anionic polymerization(LAP),solvent has a great influence on both reaction mechanism and kinetics.In this work,by using the classical butyl lithium-styrene polymerization as a model system,the effect of solvent on the mechanism and kinetics of LAP was revealed through a strategy combining density functional theory(DFT)calculations and kinetic modeling.In terms of mechanism,it is found that the stronger the solvent polarity,the more electrons transfer from initiator to solvent through detailed energy decomposition analysis of electrostatic interactions between initiator and solvent molecules.Furthermore,we also found that the stronger the solvent polarity,the higher the monomer initiation energy barrier and the smaller the initiation rate coefficient.Counterintuitively,initiation is more favorable at lower temperatures based on the calculated results ofΔG_(TS).Finally,the kinetic characteristics in different solvents were further examined by kinetic modeling.It is found that in benzene and n-pentane,the polymerization rate exhibits first-order kinetics.While,slow initiation and fast propagation were observed in tetrahydrofuran(THF)due to the slow free ion formation rate,leading to a deviation from first-order kinetics.
基金This work was supported by the Major Science and Technology Projects of Henan Province(221100230200)the National Key Research and Development Program of China(2020YFB1713500)Open Fund of State Key Laboratory of Advanced Refractories(No.SKLAR202210).
文摘Polyethylene oxide(PEO)-based solid polymer electrolytes(SPEs)with good electrochemical stability and excellent Li salt solubility are considered as one of the most promising SPEs for solid-state lithium metal batteries(SSLMBs).However,PEO-based SPEs suffer from low ionic conductivity at room temperature and high interfacial resistance with the electrodes due to poor interfacial contact,seriously hindering their practical applications.As an emerging technology,in-situ polymerization process has been widely used in PEO-based SPEs because it can effectively increase Li-ion transport at the interface and improve the interfacial contact between the electrolyte and electrodes.Herein,we review recent advances in design and fabrication of in-situ polymerized PEO-based SPEs to realize enhanced performance in LMBs.The merits and current challenges of various SPEs,as well as their stabilizing strategies are presented.Furthermore,various in-situ polymerization methods(such as free radical polymerization,cationic polymerization,anionic polymerization)for the preparation of PEO-based SPEs are summarized.In addition,the application of in-situ polymerization technology in PEO-based SPEs for adjustment of the functional units and addition of different functional filler materials was systematically discussed to explore the design concepts,methods and working mechanisms.Finally,the challenges and future prospects of in-situ polymerized PEO-based SPEs for SSLMBs are also proposed.
基金Projects(21107032,51073072)supported by the National Natural Science Foundation of ChinaProjects(Y406469,Y4110555,Y4100745)supported by Natural Science Foundation of Zhejiang Province,ChinaProjects(2011AY1048-5,2011AY1030)supported by the Science Foundation of Jiaxing Science and Technology Bureau,China
文摘Biodegradable poly (D,L-lactide) (PLA)/carboxyl-functionalized multi-walled carbon nanotubes (c-MWCNTs) composites were achieved via in-situ polymerization. These as-prepared composite materials were characterized with FT-IR, XRD, TG, DSC, SEM, and high insulation resistance meter. The results demonstrate that the multi-walled carbon nanotube was carboxyl functionalized, which improved the collection between c-MWCNTs and PLA, and further realized the graft copolymerization of c-MWCNTs and PLA. There is a higher glass transition temperature and a lower pyrolysis temperature of PLA/c-MWCNTs composites than pure PLA. The c-MWCNTs gave a better dispersion than unmodified MWCNTs in the PLA matrix, and an even coating of PLA on the surface of c-MWCNTs was obtained, which increased the interfacial interaction. High insulation resistance analysis showed that the addition of c-MWCNTs increased the electric conductivity, and c-MWCNTs performed against the large dielectric coefficient and electrostatic state of PLA. These results demonstrated that c-MWCNTs modified PLA composites were beneficial for potential application in the development of heat-resisting and conductivity plastic engineering.
基金financially supported by the National Natural Science Foundation of China (51971080)the Shenzhen Bureau of Science,Technology and Innovation Commission (GXWD20201230155427003-20200730151200003 and JSGG20200914113601003)。
文摘The function of solid electrolytes and the composition of solid electrolyte interphase(SEI)are highly significant for inhibiting the growth of Li dendrites.Herein,we report an in-situ interfacial passivation combined with self-adaptability strategy to reinforce Li_(0.33)La_(0.557)TiO_(3)(LLTO)-based solid-state batteries.Specifically,a functional SEI enriched with LiF/Li_(3)PO_(4) is formed by in-situ electrochemical conversion,which is greatly beneficial to improving interface compatibility and enhancing ion transport.While the polarized dielectric BaTiO_(3)-polyamic acid(BTO-PAA,BP)film greatly improves the Li-ion transport kinetics and homogenizes the Li deposition.As expected,the resulting electrolyte offers considerable ionic conductivity at room temperature(4.3 x 10~(-4)S cm^(-1))and appreciable electrochemical decomposition voltage(5.23 V)after electrochemical passivation.For Li-LiFePO_(4) batteries,it shows a high specific capacity of 153 mA h g^(-1)at 0.2C after 100 cycles and a long-term durability of 115 mA h g^(-1)at 1.0 C after 800 cycles.Additionally,a stable Li plating/stripping can be achieved for more than 900 h at 0.5 mA cm^(-2).The stabilization mechanisms are elucidated by ex-situ XRD,ex-situ XPS,and ex-situ FTIR techniques,and the corresponding results reveal that the interfacial passivation combined with polarization effect is an effective strategy for improving the electrochemical performance.The present study provides a deeper insight into the dynamic adjustment of electrode-electrolyte interfacial for solid-state lithium batteries.
文摘The photo-controlled/living radical polymerization of methacrylic acid (MAA) was performed at room temperature by irradiation with a high-pressure mercury lamp using azo initiators and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate (tBuS) as the accelerator. Whereas the bulk polymerization yielded polymers with a bimodal molecular weight distribution in both the absence and presence of tBuS, the solution polymerization in methanol produced unimodal polymers with the molecular weight distribution of 2.0 - 2.3 in the presence of tBuS. The molecular weight distribution of the resulting poly (MAA) decreased with an in- crease in tBuS. The dilution of the monomer concentration also reduced the molecular weight distribution. The use of the initiator with a low 10-h half-life temperature also effectively controlled the molecular weight. The livingness of the polymerization was confirmed by obtaining linear increases in the first-order conversion versus time, the molecular weight versus the conversion, and the molecular weight versus the reciprocal of the initiator concentration.
基金Supported by the National Natural Science Foundation of China(No. 2 980 40 0 6 ) and the Youth Foundation of Jiangsuprovince(No.BQ980 2 4)
文摘A novel acrylate inimer, 2-(2-chloroacetyloxy) ethyl acrylate, was prepared by the reaction of 2-hydroxyethyl acrylate with chloroacetyl chloride in the presence of triethylamine. The self-condensing vinyl living radical polymerization of the inimer was studied and the hyperbranched macromolecules containing ester linkages on their backbone were prepared. All the polymerization products were characterized by 1H NMR. The polymerization degree and the branching parameter were calculated based on the 1H NMR spectra. It has been shown that this inimer exhibits a very distinctive polymerization behavior. Similar to step-growth polymerization, the polymerization degree of the products formed increased exponentially during the early stage of the polymerization, and then the increasing rate slowed down. However, the inimer remained present throughout the polymerization consistent with conventional free radical polymerization. Also, if much longer polymerization time was used, the polymerization system would become gel due to the crosslinking reaction derived from radical-radical recombination. As a result of the unequal reactivity of -CH2Cl and >CHCl, an almost linear product was obtained at a molar ratio of bipy to inimer=0.05, while a relatively high ratio of bipy to inimer 1 favored the formation of the branched structure. The macromolecules formed at a high ratio of bipy to inimer 1 exhibited an excellent solubility in organic solvents such as acetone.
基金The Project is supported by the National Natural Science Foundation of China (Grant No. 29634010-2), Shanghai Education Development Foundation Shuguang Program (Project SG97008) and Research Institute of Beijing Yanshan Petrochemical Corporation.
文摘Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene) oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator. Then the PS-CH2CH2OCOCCl3 (PS-Cl-3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl-3) was used as the macroinitiator in the polymerization of(meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl-3 and the P(S-b-MMA) were identified by FTIR and H-1-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.
文摘Polypropylene/montmorillonite (PP/MMT)nanocomposites were prepared by in-situ polymerization using aMMT/MgCl_2/TiCl_4-EB Ziegler-Natta catalyst activated by triethylaluminum(TEA). The enlarged layer spacing of MMT wasconfirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components.X-ray photoelectron spectrometry (XPS) analysis proved that TiCl_4 was mainly supported on MgCl_2 instead of on the surfaceof MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXDpatterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).
基金Education Commission of Shanghai (No04AB19)Science and Technology Commission of Shanghai Municipal Government(Nano Founds No 0452NM051)
文摘Polysulfonamide/zinc oxide(PSA/ZnO) nanocomposite films with w(ZnO)=0.5% were prepared by in-situ polymerization based on 4,4′-diaminodiphenylsulfone and terephthaloyl chloride in the common solvent N,N-Dimethylacetamide(DMAc). Atomic force microscopy (AFM) was employed to observe the microstructure of the composite film. The thermal property was investigated by TGA and mechanical property was characterized by DXLL-1000 electromechanical material testing machine. The results showed that the breaking strength of the film containing 0.5% ZnO was great enhanced. The average size of ZnO particles was below 100 nm. The introduction of ZnO as nano filler in PSA react as UV shield effect and make the composite mechanical property improved.
文摘Conductive polymer composites based on crystalline polymer matrix have been prepared by using an in-situ polymerization process of pyrrole in amorphous poly (ethylene terephthalate) (PET) film. The DSC and WAXD measurement and SEM observation show that liquid-induced crystallization of PET matrix has occurred during the preparation of composite films. Depending upon the equilibrium degree of swelling and crystallinity, the limited depth of penetration of pyrrole molecules results in a skin-core structure of the composite film. The skin layer containing charge transfer intercalated polypyrrole has a surface resistance of 3.5×10;Ω. Rigid and heat-resistant polypyrrole molecules formed in PET film increase the tensile modulus and, especially, the rigidity of PET at elevated temperatures. However, they decrease the tensile strength and elongation at break, and impair the thermal ductility of PET.
文摘Atom transfer radical polymerization (ATRP) of styrene catalyzed by cuprous (CuX)/1,10-phenanthroline (Phen) and CuX/CuX2/Phen was conducted in an aqueous dispersed system. A stable latex was obtained by using ionic surfactant sodium lauryl sulfonate (SLS) or composite surfactants, such as SLS/polyoxyethylene nonyl phenyl ether (OP-10), SLS/hexadecanol and SLS/OP-10/hexadecanol, Among which SLS and SLS/OP-10/hexadecanol systems established better dispersed effect during the polymerization, It was found that Phen was a more suitable ligand than N,N,N',N',N'-pentamethyldiethylenetriamine (PMDETA) to maintain an appropriate equilibrium of the activator Cu(I) and the deactivator Cu(II) between the organic phase and the water phase, The effect of several initiators (such as EBiB, CCl4 and 1-PEBr) and the temperature on such a kind of ATRP system was also observed. The number-average molar mass (M-n) of polystyrene (PS) increased with the conversion and the molar mass distribution (M-w/M-n) remained narrow. These experimental data show that the polymerization could be controlled except for the quick increase of monomer conversion and the number-average molar mass of PS in the initial stage of polymerization. Furthermore, the initiator efficiency was found to be low (similar to57%) in CuX/Phen catalyzed system. To overcome this problem, Cu(II)X-2 (20 mol%-50 mol% based on CuX) was introduced into the polymerization system. In this case, higher initiator efficiency (60%-90%), low M-w/M-n of PS (as low as 1.08) were achieved and the molar masses of the PS fit with the theoretical ones.
文摘The acceleration mechanisms by a photosensitive onium salt for the nitroxide-mediated photocontrolled/living radical polymerization (photo-NMP) were determined. The photo-NMP of methyl methacrylate was performed by irradiation at room temperature using 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl (MTEMPO) as the mediator and (2RS, 2’RS)-azobis(4-methoxy-2,4-dimethylvaleronitrile) as the initiator. The polymerization was accelerated in the presence of (4-tertbutylphenyl)diphenylsulfonium triflate (tBuS) to produce a polymer with a molecular weight distribution as narrow as the polymerization in its absence. (±)-Camphor-10-sulfonic acid or 2-fluoro-1-methylpyridinium p-toluenesulfonate had no effect on the polymerization speed, suggesting that tBuS did not serve as the photo-acid generator for the photo-NMP. It was found that the acceleration of the polymerization was based on the electron transfer from MTEMPO into tBuS in the excited state to temporarily generate a free radical propagating chain end and an oxoaminium salt (OAS), the one-electron oxidant of MTEMPO. This electron transfer mechanism was verified on the basis of the fact that the photo-NMP in the presence of tBuS was still accelerated by triphenylamine, the electron transfer inhibitor, to partly produce a polymer with an uncontrolled molecular weight. The formation of an uncontrolled molecular weight polymer indicated the generation of a free radical propagating chain end due to the deactivation of the OAS by the triphenylamine. It was deduced that tBuS served as the electron acceptor from MTEMPO in the excited state to temporarily produce a free radical propagating chain end along with OAS, resulting in the acceleration of the polymerization.
文摘'Living'/controlled radical polymerization of ethyl methacrylate (EMA) was carried out with a 2,2'-azobisisobutyronitrile (AIBN)/ferric chloride (FeCl_3)/triphenylphosphine (PPh_3) initiation system at 85℃. Thc numberaverage molecular weight (M_n) increases linearly with monomer conversion and the rate of polymerization is first order withrespect to monomer concentration. The M_w of PEMA ranges from 3900 to 17600 and the polydispersity indices are quitenarrow (1.09~1.22). The conversion can reach up to~100% and M_w of the polymers obtained is close to that designed. Thepolymerization mechanism belongs to the reverse atom transfer radical polymerization (ATRP). The polymer was end-functionalized by chlorine atom, which acts as a macroinitiator to proceed extension polymerization in the presence ofCuBr/bipy catalyst system via an ATRP process. The presence of ω-chlorine in the PEMA obtained was identified by ~1H-NMR spectrum.
文摘A kind of new nano composite with ultraviolet (UV) ray resistance and high temperature stability was prepared by in-situ polymerization in low temperature. Polysulfonamide (PSA) was synthesized with 4, 4'-diaminodiphenyl sulfone (DDS) and terephthaloyl chloride (TPC) in the common solvent N, N-Dimethyl- -acetamide (DMAc). Nano filler is a certain nano titanium oxide modified by silicon oxide (TMS), which plays the role of UV resistance additives. Properties of the novel composite materials were characterized by Atomic Force microscopy (AFM), thermal gravimetric Analysis (TGA) and Ultraviolet Spectroscopy. AFM had showed the sizes and distributions of TMS particles in the nanocomposite. Ultraviolet Spectroscopy for the nanocomposites showed a large absorption in UV band. TGA showed the decomposition temperature was increased over ten degrees with 0.5% wt TMS for this nanocomposite compared with pure PSA.
基金supported by the National Natural Science Foundation of China (22225104, 92356302 and 22071077)China Postdoctoral Science Foundation (2022TQ0115 and 2022M711297)。
文摘The poly(vinylpyridine)(PVP) based(co)polymers are of particular interest in materials science, due to their multifunctionality and diverse applications. So far, there is no report on the sequence-regulated copolymerization of vinylpyridines(VPs) and methacrylate monomer in one-step manner yet. Here we designed and synthesized a series of guanidine phosphines as Lewis base(LB), which is combined with bulky organoaluminium to construct Lewis pairs(LPs) for polymerization of VPs. The living/controlled polymerization of 4-vinylpyridine(4-VP) or 2-vinylpyridine(2-VP) can be accomplished with remarkable efficiency by such Lewis pair polymerization(LPP), furnishing polymers with high molecular weight(up to 288 kg/mol) and narrow molecular weight distribution(as low as 1.17). Mechanistic studies reveal the interaction of LPs and formation of zwitterionic intermediates, providing solid evidences to support the proposed polymerization mechanism. More importantly, by simply adjusting the LA dosage, this LPP strategy realizes the unprecedented control over the sequence regulation of 2-VP-based copolymers from gradient to block in one-step manner, regardless of the monomer ratio, which greatly expands the versatility of the LPP.
基金financially supported by the National Natural Science Foundation of China (Nos. 21972112 and 22225104)China Postdoctoral Science Foundation (Nos. 2022TQ0115 and 2022M711297)。
文摘Chemoselective,living/controlled polymerizations of allyl methacrylate(AMA) and vinyl methacrylate(VMA) with/without methyl methacrylate(MMA) by using the phosphonium ylide/organoaluminum based Lewis pairs(LPs) have been realized.The P-ylide-2/AIMe(BHT)_(2)(Pylide-2=Ph_(3)P=CHMe and BHT=2,6-iBu_(2)-4-MeC_(6)H_(2)O) was demonstrated to be superior by which homopolymers PAMAs(M_(n)=27.6-111.5kg/mol and ■=1.14-1.25) and PVMAs(M_(n)=28.4-78.4 kg/mol and ■=1.12-1.18) and block copolymers PMMA-b-PAMA,PAMA-b-PVMA,PAMA-bPMMA,PMMA-b-PAMA-b-PMMA,PAMA-b-PMMA-b-PAMA,and PAMA-b-PVMA-b-PAMA were synthesized.In the polymerizations,all of the monomers were reacted by the conjugated ester vinyl groups leaving intactly the nonconjugated acryloxy groups.The pendant acryloxy groups attached to the main chain enable further to post-functionalization by the AIBN-induced radical "thiol-ene" reaction using PhCH_(2)SH.The thiolether side group-containing polymers PAMA-SCH_(2)Ph and PAMA-SCH_(2)Ph-b-PMMA-b-PAMA-SCH_(2)Ph were thus prepared.
基金financially supported by the National Natural Science Foundation of China(grant nos.22001254 and 22175188).
文摘Traditional ring-opening metathesis polymerization(ROMP)reactions exhibit broad functional group compatibility and precise control over polymer architectures,albeit with non-biodegradable backbones.Recent progress has resulted in a series of biodegradable ROMP products with diverse cleavable functional groups,yet the majority of the monomers display moderate to low ring strain,which restricts their living polymerization reactivity.In this study,a novel category of readily available 7-oxa-2,3-diazanorbornenes(ODAN)is presented,which exhibits the highest ring strain(22.8 kcal/mol)compared to existing degradable ROMP monomers.This trait endows ODAN with the ability to perform living polymerization reactions,generating narrowly dispersed homopolymers,block copolymers,and statistical copolymers with various cyclic olefin comonomers,thereby enabling precise control over distribution of the biodegradable functional groups.Additionally,the resultant polymers comprise directly connected allyl hemiaminal ether and urethane units,which are hydrolyzable at controllable rates.Thus,these well-defined,structure-tunable,and backbone-biodegradable ROMP polymers are applied as nanoetching materials and biodegradable delivery carriers.
文摘Dendrimer-like amphiphilic copolymer is a kind of three-dimensional spherical structure polymer. An amphiphilic dendrimer-like diblock copolymer, PEEGE-G2-b-PEO(OH)12, constituted of a hydrophobic poly(ethoxyethyl glycidol ether) inner core and a hydrophilic poly(ethylene oxide) outer layer, has been successfully synthesized by the living anionic ring-opening polymerization method. The intermediates and targeted products were charac-terized with 1H NMR spectroscopy and gel permeation chromatography. The application on drug delivery of dendrimer-like diblock copolymer PEEGE-G2-b-PEO(OH)12 using DOX as a model drug was also studied. The drug loading content and encapsulation e ciency were found at 13.07% and 45.75%, respectively. In vitro release experiment results indicated that the drug-loaded micelles exhibited a sustained release behavior under acidic media.
文摘Blindness and vision impairment are the most devastating global health problems resulting in a substantial economic and social burden.Delivery of drug to particular parts of the anterior or posterior segment has been a major challenge due to various protective barriers and elimination mechanisms associated with the unique anatomical and physiological nature of the ocular system.Drug administration to the eye by conventional delivery systems results in poor ocular bioavailability(<5%).The designing of a novel approach for a safe,simple,and effective ocular drug delivery is a major concern and requires innovative strategies to combat the problem.Over the past decades,several novel approaches involving different strategies have been developed to improve the ocular delivery system.Among these,the ophthalmic in-situ gel has attained a great attention over the past few years.This review discussed and summarized the recent and the promising research progress of in-situ gelling in ocular drug delivery system.
基金The authors gratefully acknowledge the support from Beijing Municipal Commission of Education.
文摘Amphiphilic star-block copolymers composed of polystyrene and poly(acrylic acid) were synthesized by iodide- mediated radical polymerization. Firstly, free radical polymerization of styrene was carried out with AIBN as initiator and 1,1,1-trimethyolpropane tri(2-iodoisobutyrate) as chain transfer agent, giving iodine atom ended star-shaped polystyrene with three arm chains, R(polystyrene)3. Secondly, tert-butyl acrylate was polymerization using polystyrene obtained as macro-chain transfer agent, and star-block copolymer, R(polystyrene-b-poly(tert-butyl acrylate))3 with controlled molecular weight was obtained. Finally, amphiphilic star-block copolymer, R(polystyrene-b-poly(acrylic acid))3 was obtained by hydrolysis of R(polystyrene-b-poly(tert-butyl acrylate))3 under acidic condition.