【目的】以不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐碱土壤为实验对象,探讨花生种子在吸水膨胀与萌发过程中,不同类型盐碱土对种子际土壤微生物多样性变化的影响。【方法】采集不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐...【目的】以不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐碱土壤为实验对象,探讨花生种子在吸水膨胀与萌发过程中,不同类型盐碱土对种子际土壤微生物多样性变化的影响。【方法】采集不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐碱土壤,通过对各样品中细菌的16S r RNA基因的V3-V4区进行PCR扩增,利用Illumina Hiseq高通量测序技术对12份V3-V4高变区PCR产物进行测序,并对测序数据进行生物信息学分析。【结果】(1)盐碱土壤的种子际细菌群落多样性高于非盐碱土壤,且以东营青坨滨海盐土种子际土壤细菌群落多样性较高。(2)不同类型土壤样本微生物群落结构在纲水平存在明显差异。4种土壤类型种子际土壤细菌共分属于6个菌纲,分别为Proteobacteria、Actinobacteria、Actinobacteria、Bacteroidetes、Acidobacteria和Firmicutes菌纲,并均以Proteobacteria和Actinobacteria菌纲为主要菌纲。全样本菌落结构分析结果表明,4种类型土壤中不同吸胀时间内种子际微生物菌落在门、属水平上的类型和丰度差异最为显著(P<0.05)。(3)beta多样性分析和各样本遗传距离(phylogenetic distances)聚类树图分析表明,4个土壤类型的12个土壤样本种子际土壤中微生物群落均可聚为2大类。【结论】土壤含盐量越高其种子际土壤细菌群落多样性较高。不同类型土壤样本微生物群落结构在纲水平存在明显差异,以Proteobacteria和Actinobacteria菌纲为主要菌纲。种子吸胀萌发时间影响种子际微生物菌落在门、属水平上的类型和丰度,但对相同土壤类型样本间遗传距离无影响。展开更多
Soils have become an important sink for antibiotic resistance genes(ARGs).To better understand the impacts of ARGs on the soil ecosystem,the transport of ARGs is a basic question.So far,however,the role of soil animal...Soils have become an important sink for antibiotic resistance genes(ARGs).To better understand the impacts of ARGs on the soil ecosystem,the transport of ARGs is a basic question.So far,however,the role of soil animals in the dispersal of ARGs is not understood.Here,two treatments(without collembolans and with collembolans)were established,each treatment included unamended and manure-amended soil,and soil samples were collected at 14,28 and 56 days after incubation.The effects of the collembolan Folsomia candida on dispersal of ARGs in the soil ecosystem were explored using high-throughput qPCR combined with Illumina sequencing.As the culture time increased,more shared ARGs and OTUs were detected between the unamended and manured soil,especially in the treatment with collembolans.Vancomycin,aminoglycoside and MLSB genes may have been more readily transported by the collembolan.On the 28th day after incubation,a high abundance of mobile genetic elements(MGEs)was found in the treatment with collembolans.These results clearly reveal that collembolans can accelerate the dispersal of ARGs in the soil ecosystem.Procrustes analysis and the Mantel test both indicate that soil bacterial communities were significantly correlated with ARG profiles.Furthermore,partial redundancy analysis indicates that soil bacterial communities can explain 41.28% of the variation in ARGs.These results suggest that the change of soil microbial community have an important contribution to the dispersal of ARGs by the collembolan.展开更多
Ready-to-eat wine-pickled mud snails(Bullacta exarata)typically host a large number of microorganisms and are frequently contaminated with pathogenic bacteria during processing,resulting in a higher risk for foodborne...Ready-to-eat wine-pickled mud snails(Bullacta exarata)typically host a large number of microorganisms and are frequently contaminated with pathogenic bacteria during processing,resulting in a higher risk for foodborne illness with consumption.In this study,the decontamination effects of different treatment methods,including the use of ultrasonic cleaning(USC),natural chemicals,and ultra-high pressure(UHP),on the quality and safety of pickled mud snails were investigated by assessing the total viable count(TVC),total volatile base nitrogen(TVB-N)content,thiobarbituric acid-reactive substance(TBARS),and pH value of the products after 12 months of storage at-20℃.Treatment with 200 W USC for 5 min was the most effective approach for reducing TVC in raw mud snails,with a minimal change in food quality.Natural chemical treatment or UHP treatment significantly inhibited the increase inTVC,pH,and TBARS and TVB-N accumulation compared with the control group;however,their combined treatment had no synergistic effect.In contrast,the combined chemical treatment was more effective in inhibiting changes in the above indices in pickled mud snails than UHP treatment alone or combined chemicals+UHP treatment.In addition,the bacterial diversity of pickled mud snails before and after 12 months of storage at-20℃was determined using lllumina MiSeq sequencing.Our results indicated that USC combined with natural chemicals can be utilized commercially to maintain the quality and safety of pickled mud snails during storage at-20℃.展开更多
文摘【目的】以不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐碱土壤为实验对象,探讨花生种子在吸水膨胀与萌发过程中,不同类型盐碱土对种子际土壤微生物多样性变化的影响。【方法】采集不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐碱土壤,通过对各样品中细菌的16S r RNA基因的V3-V4区进行PCR扩增,利用Illumina Hiseq高通量测序技术对12份V3-V4高变区PCR产物进行测序,并对测序数据进行生物信息学分析。【结果】(1)盐碱土壤的种子际细菌群落多样性高于非盐碱土壤,且以东营青坨滨海盐土种子际土壤细菌群落多样性较高。(2)不同类型土壤样本微生物群落结构在纲水平存在明显差异。4种土壤类型种子际土壤细菌共分属于6个菌纲,分别为Proteobacteria、Actinobacteria、Actinobacteria、Bacteroidetes、Acidobacteria和Firmicutes菌纲,并均以Proteobacteria和Actinobacteria菌纲为主要菌纲。全样本菌落结构分析结果表明,4种类型土壤中不同吸胀时间内种子际微生物菌落在门、属水平上的类型和丰度差异最为显著(P<0.05)。(3)beta多样性分析和各样本遗传距离(phylogenetic distances)聚类树图分析表明,4个土壤类型的12个土壤样本种子际土壤中微生物群落均可聚为2大类。【结论】土壤含盐量越高其种子际土壤细菌群落多样性较高。不同类型土壤样本微生物群落结构在纲水平存在明显差异,以Proteobacteria和Actinobacteria菌纲为主要菌纲。种子吸胀萌发时间影响种子际微生物菌落在门、属水平上的类型和丰度,但对相同土壤类型样本间遗传距离无影响。
基金funded by the National Natural Science Foundation of China(41571130063)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB15020302 and XDB15020402)the National Key Research and Development Program of China-International collaborative project from Ministry of Science and Technology(Grant No.2017YFE0107300).
文摘Soils have become an important sink for antibiotic resistance genes(ARGs).To better understand the impacts of ARGs on the soil ecosystem,the transport of ARGs is a basic question.So far,however,the role of soil animals in the dispersal of ARGs is not understood.Here,two treatments(without collembolans and with collembolans)were established,each treatment included unamended and manure-amended soil,and soil samples were collected at 14,28 and 56 days after incubation.The effects of the collembolan Folsomia candida on dispersal of ARGs in the soil ecosystem were explored using high-throughput qPCR combined with Illumina sequencing.As the culture time increased,more shared ARGs and OTUs were detected between the unamended and manured soil,especially in the treatment with collembolans.Vancomycin,aminoglycoside and MLSB genes may have been more readily transported by the collembolan.On the 28th day after incubation,a high abundance of mobile genetic elements(MGEs)was found in the treatment with collembolans.These results clearly reveal that collembolans can accelerate the dispersal of ARGs in the soil ecosystem.Procrustes analysis and the Mantel test both indicate that soil bacterial communities were significantly correlated with ARG profiles.Furthermore,partial redundancy analysis indicates that soil bacterial communities can explain 41.28% of the variation in ARGs.These results suggest that the change of soil microbial community have an important contribution to the dispersal of ARGs by the collembolan.
基金the Major Project of Agricultural in Ningbo(No.2017C110009),China.
文摘Ready-to-eat wine-pickled mud snails(Bullacta exarata)typically host a large number of microorganisms and are frequently contaminated with pathogenic bacteria during processing,resulting in a higher risk for foodborne illness with consumption.In this study,the decontamination effects of different treatment methods,including the use of ultrasonic cleaning(USC),natural chemicals,and ultra-high pressure(UHP),on the quality and safety of pickled mud snails were investigated by assessing the total viable count(TVC),total volatile base nitrogen(TVB-N)content,thiobarbituric acid-reactive substance(TBARS),and pH value of the products after 12 months of storage at-20℃.Treatment with 200 W USC for 5 min was the most effective approach for reducing TVC in raw mud snails,with a minimal change in food quality.Natural chemical treatment or UHP treatment significantly inhibited the increase inTVC,pH,and TBARS and TVB-N accumulation compared with the control group;however,their combined treatment had no synergistic effect.In contrast,the combined chemical treatment was more effective in inhibiting changes in the above indices in pickled mud snails than UHP treatment alone or combined chemicals+UHP treatment.In addition,the bacterial diversity of pickled mud snails before and after 12 months of storage at-20℃was determined using lllumina MiSeq sequencing.Our results indicated that USC combined with natural chemicals can be utilized commercially to maintain the quality and safety of pickled mud snails during storage at-20℃.