期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of fundamental structure parameters on dynamic responses of submerged floating tunnel under hydrodynamic loads 被引量:9
1
作者 Xu Long Fei Ge Lei Wang Youshi Hong State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2009年第3期335-344,共10页
This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffnes... This paper investigates the effects of structure parameters on dynamic responses of submerged floating tunnel (SFT) under hydrodynamic loads. The structure parameters includes buoyancy-weight ratio (BWR), stiffness coefficients of the cable systems, tunnel net buoyancy and tunnel length. First, the importance of structural damp in relation to the dynamic responses of SPT is demonstrated and the mechanism of structural damp effect is discussed. Thereafter, the fundamental structure parameters are investigated through the analysis of SFT dynamic responses under hydrodynamic loads. The results indicate that the BWR of SFT is a key structure parameter. When BWR is 1.2, there is a remarkable trend change in the vertical dynamic response of SFT under hydrodynamic loads. The results also indicate that the ratio of the tunnel net buoyancy to the cable stiffness coefficient is not a characteristic factor affecting the dynamic responses of SFT under hydrodynamic loads. 展开更多
关键词 Submerged floating tunnel Structural dampBuoyancy-weight ratio cable stiffness coefficient Tunnel net buoyancy - Hydrodynamic load
下载PDF
Numerical simulation of deepwater deployment for offshore structures with deploying cables 被引量:1
2
作者 胡小舟 刘少军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期922-930,共9页
Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for ca... Deepwater deployment of offshore structures in different sea states was investigated. The whole deployment system was modeled as a lumped mass model, and discretization scheme for cable geometry and methodology for calculating the internal and external force acting on deploying cable were presented. The deployment model suitable for the time-varying length of deploying cable was specified. The free-surface flow fields together with the ship motions were used to calculate dynamic tension in the deploying cable during deployment of the structure. The deployment of deep sea mining system which was a typical subsea working system was employed. Based on lumped mass analysis model and parameters of deep sea mining system, numerical simulations were performed, and dynamic load and dynamic amplification factor(DAF) with different cable parameters, deploying velocities and sea states were obtained. It is shown that cable parameters and amplitudes of ocean waves can significantly influence the dynamic load and DAF, and the time-varying natural period of deploying system is a dominant factor, while the effect of deploying velocity is not obvious. 展开更多
关键词 deployment cable dynamic load dynamic amplification factor
下载PDF
Advanced aerostatic analysis of long-span suspension bridges
3
作者 张新军 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第3期424-429,共6页
As the span length of suspension bridges increases, the diameter of cables and thus the wind load acting on them, the nonlinear wind-structure interaction and the wind speed spatial non-uniformity all increase consequ... As the span length of suspension bridges increases, the diameter of cables and thus the wind load acting on them, the nonlinear wind-structure interaction and the wind speed spatial non-uniformity all increase consequently, which may have unnegligible influence on the aerostatic behavior of long-span suspension bridges. In this work, a method of advanced aerostatic analysis is presented firstly by considering the geometric nonlinearity, the nonlinear wind-structures and wind speed spatial non-uniformity. By taking the Runyang Bridge over the Yangtze River as example, effects of the nonlinear wind-structttre interaction, wind speed spatial non-uniformity, and the cable's wind load on the aerostatic behavior of the bridge are investigated analytically. The results showed that these factors all have important influence on the aerostatic behavior, and should be considered in the aerostatic analysis of long and particularly super long-span suspension bridges. 展开更多
关键词 Long-span suspension bridge Aerostatic analysis Nonlinear wind-structure interaction Wind speed spatial non-uniformity cable's wind load
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部