Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous report...Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study展开更多
The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the sur...The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the surfaces' micro-hardness profiles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to observe the wom surfaces. The results indicated that the material with the highest hardness was the one continuously cooled at 20℃, which exhibited the lowest wear rate under each set of test conditions. The hardness of the worn surface and the thickness of the hardened layer increased with the increases in impact load and in the number of test cycles. The better wear performance of the sample cooled at 20℃ is attributed to its finer microstructure and superior mechanical properties. All the samples underwent the transformation induced plasticity (TRIP) phenomenon after impact wear, as revealed by the fact that small amounts of retained austenite were detected by XRD.展开更多
This paper aims to deal with the assessment of axial load capacity for cast in place pile foundations, which are made by the earth drill method, by using the data taken from Standard Penetration Tests (SPTs) and Piezo...This paper aims to deal with the assessment of axial load capacity for cast in place pile foundations, which are made by the earth drill method, by using the data taken from Standard Penetration Tests (SPTs) and Piezocone Penetration Tests (CPTUs). These tests were carried out as part of the investigation program for P.N.G. Terminal-Power Plant, near Semani beach, in Hoxhara marsh, in the western part of Albania. The design of axial load capacity of piles is based on empirical formula using SPT and CPTU values. This study presents the results of axial load capacity analysis of cast in place piles by different analytical calculation methods, which are based on in situ tests results, and also referring to the Building Standard Law of Japan. In the end of our work, differences between calculations methods by using different in situ tests results are shown in tables and graphs.展开更多
文摘Laser cladding technique has been applied to renovate some partially-damaged (or worn) components with Fe, Ni, Co-base alloys, hence to improve their hardness values and wear resistance successfully in previous reports. But for some punching or shearing cast iron dies damaged or worn in automobile manufacture, the renovated surfaces also bear some impact loading. Therefore, a small-energy and multi-impact (SEMI) test was designed to investigate the fracture behaviour of renovated cast iron dies achieved by laser cladding of Fe and Ni-base alloys under SEMI loading to meet above requirement. observations show that the fracture took place in the substrate near to the substrate/coating interface rather than at the interface. The tempering temperature has a great influence on the cycles to fracture of laser-clad samples under SEMl loading, i.e. the low tempering temperature of 300℃ gives a maximum cycle to fracture, while a higher tempering temperature of 400℃ has a minimum. Furthermore, the fracture mechanism has also been discussed in present study
文摘The dry impact wear behavior of bainite ductile cast iron was evaluated under three different impact loads for 30000 cycles. The strain-hardening effects beneath the contact surfaces were analyzed according to the surfaces' micro-hardness profiles. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to observe the wom surfaces. The results indicated that the material with the highest hardness was the one continuously cooled at 20℃, which exhibited the lowest wear rate under each set of test conditions. The hardness of the worn surface and the thickness of the hardened layer increased with the increases in impact load and in the number of test cycles. The better wear performance of the sample cooled at 20℃ is attributed to its finer microstructure and superior mechanical properties. All the samples underwent the transformation induced plasticity (TRIP) phenomenon after impact wear, as revealed by the fact that small amounts of retained austenite were detected by XRD.
文摘This paper aims to deal with the assessment of axial load capacity for cast in place pile foundations, which are made by the earth drill method, by using the data taken from Standard Penetration Tests (SPTs) and Piezocone Penetration Tests (CPTUs). These tests were carried out as part of the investigation program for P.N.G. Terminal-Power Plant, near Semani beach, in Hoxhara marsh, in the western part of Albania. The design of axial load capacity of piles is based on empirical formula using SPT and CPTU values. This study presents the results of axial load capacity analysis of cast in place piles by different analytical calculation methods, which are based on in situ tests results, and also referring to the Building Standard Law of Japan. In the end of our work, differences between calculations methods by using different in situ tests results are shown in tables and graphs.