The hot load deformation tests of four kinds of insulating fireclay bricks were carried out using a high temperature creep furnace from Sinosteel Luoyang hlstitute of Refractories Reseorch Co. , Ltd. The testing load ...The hot load deformation tests of four kinds of insulating fireclay bricks were carried out using a high temperature creep furnace from Sinosteel Luoyang hlstitute of Refractories Reseorch Co. , Ltd. The testing load was fixed at 0. 069 MPa and the total testing time was with- in 6 h including the holding time of 1.5 h. The hot load defi〉rmation process of insulating fireclay bricks can be divided into three steps : ( 1 ) expansion step from room temperature to RUL Tmax;( 2 ) quick shrinkage step be- tween. RUL T and Ttest; 3 ) relatively slow shrinkage step during holding process. The deformation rate at the beginning of holding process (D0h) should be controlled withi, +0. 1%. The hot load deformation testing tem- perature of insulating fireclay bricks was optimized as the value of RUL T plus 220℃.展开更多
It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops ...It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.展开更多
The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used ...The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.展开更多
In this study,the Gravity Recovery and Climate Experiment(GRACE)satellite observations,combining 71 continuous Global Positioning System(CGPS)data,are used to detect surface vertical loading deformation of the Amazon ...In this study,the Gravity Recovery and Climate Experiment(GRACE)satellite observations,combining 71 continuous Global Positioning System(CGPS)data,are used to detect surface vertical loading deformation of the Amazon Basin during 2002-2020.The results show that the maximal annual amplitude of the surface mass changes derived by GRACE is more than 80 cm in terms of the equivalent water height(EWH)in the Amazon Basin.Most part of Amazon experiences mass gain,especially the Amazon River,while there is little mass loss in the northern and eastern parts.Through the Pearson correlation analysis,the monthly de-trended time series of GPS-observed vertical deformation and GRACE-derived mass loading are in good agreement with an average correlation coefficient of about 0.75 throughout the Amazon region.The common seasonal signals of GPS vertical displacements and GRACE/GFO loading deformations are extracted using the stack averaging.The two kinds of common seasonal signals show a good consistency,and together indicate approximate 20 mm peak-to-peak seasonal amplitude.Strong annual variations are identified both in the monthly GPS and GRACE/GFO data by the wavelet analysis.However,the time-frequency spectrum of GPS has more signal details and more significant semi-annual variations than that of GRACE/GFO.These results may contribute to the understanding of secular crustal vertical deformation in the Amazon Basin.展开更多
Rivers often witness non-uniform bed load sedim ent transport. For a long tim e, non-uniform bed load transport has been assum ed to be at capacity regime determined exclusively by local flow. Yet whether the capacity...Rivers often witness non-uniform bed load sedim ent transport. For a long tim e, non-uniform bed load transport has been assum ed to be at capacity regime determined exclusively by local flow. Yet whether the capacity assumption for non-uniform bed load transport is justified remains poorly understood. Here, the relative time scale of non-uniform bed load transport is evaluated and non-capacity and capacity models are compared for both aggradation and degradation cases with observed data. As characterized by its relative time scale, the adaptation of non-uniform bed load to capacity regime should be fulfilled quickly. However, changes in the flow and sedim ent inputs from upstream or tributaries hinder the adaptation. Also, the adaptation to capacity regime is size dependent, the finer the sediment size the slower the adaptation is, and vice versa. It is shown that the capacity model may entail considerable errors compared to the non-capacity model. For modelling of non-uniform bed load, non-capacity modelling is recommended, in which the temporal and spatial scales required for adaptation are explicitly appreciated.展开更多
When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test...When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load–time histories is then deduced. Measured data from the Beijing–Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load–time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.展开更多
Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with...Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with thin wall respectively. For simulating the deformation of the lining washer under equiaxial pressure, the modified Lagrangian finite element analysis is applied on the 228 triangular elements. Under assembly pressure, the plastoelastic deformation of both the lining washer and the outer body are studied in terms of Tresca's yield criterion and the limitation of the plastic deformation is presented when the two components are assembled into one unit. For the production of this kind of bottle cover, experiments are carried out by carefully measuring the changes of the diameter of lining washer as well as that of the outer body. It is shown that results from the experiments have a good agreement with the theoretical calculation and the maximum value of the allowable pressure has successfully been used in the design of newly developed bottle cap production system.展开更多
As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and dama...As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver.展开更多
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated compo...The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.展开更多
J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working dens...J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.展开更多
Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentat...Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia.展开更多
文摘The hot load deformation tests of four kinds of insulating fireclay bricks were carried out using a high temperature creep furnace from Sinosteel Luoyang hlstitute of Refractories Reseorch Co. , Ltd. The testing load was fixed at 0. 069 MPa and the total testing time was with- in 6 h including the holding time of 1.5 h. The hot load defi〉rmation process of insulating fireclay bricks can be divided into three steps : ( 1 ) expansion step from room temperature to RUL Tmax;( 2 ) quick shrinkage step be- tween. RUL T and Ttest; 3 ) relatively slow shrinkage step during holding process. The deformation rate at the beginning of holding process (D0h) should be controlled withi, +0. 1%. The hot load deformation testing tem- perature of insulating fireclay bricks was optimized as the value of RUL T plus 220℃.
基金supported by the National Natural Science Foundation of China (Grants U1134202,51305360)the National Basic Research Programof China(Grant2011CB711103)the 2015 Doctoral Innovation Funds of Southwest Jiaotong University
文摘It is important to study the subgrade characteristics of high-speed railways in consideration of the water–soil coupling dynamic problem,especially when high-speed trains operate in rainy regions.This study develops a nonlinear water–soil interaction dynamic model of slab track coupling with subgrade under high-speed train loading based on vehicle–track coupling dynamics.By using this model,the basic dynamic characteristics,including water–soil interaction and without water induced by the high-speed train loading,are studied.The main factors-the permeability coefficien and the porosity-influencin the subgrade deformation are investigated.The developed model can characterize the soil dynamic behaviour more realistically,especially when considering the influenc of water-rich soil.
文摘The computer simulation of Al three-dimensional crystallite containing grain boundary of special type was carried out and its behaviour under high rate loading was investigated. The molecular dynamics method was used and interaction betwen atoms was described based on pseudopotential method. Vortical character of the atom movements in the grain boundary region is realized under shear loading in certain directions. Back and forth movements of atoms in the direction which is perpendicular to the shear also arise. Amplitude of such movements is approximately equal to an interplanar distance in this direction.
基金funded by the NSFCs(Grant Nos.41904012,41774024,41974022and 41525014)China Postdoctoral Science Foundation(2020T130482,2018M630879)+1 种基金the Fundamental Research Funds for Central Universities(2042020kf0008)LIESMARS Special Research Funding。
文摘In this study,the Gravity Recovery and Climate Experiment(GRACE)satellite observations,combining 71 continuous Global Positioning System(CGPS)data,are used to detect surface vertical loading deformation of the Amazon Basin during 2002-2020.The results show that the maximal annual amplitude of the surface mass changes derived by GRACE is more than 80 cm in terms of the equivalent water height(EWH)in the Amazon Basin.Most part of Amazon experiences mass gain,especially the Amazon River,while there is little mass loss in the northern and eastern parts.Through the Pearson correlation analysis,the monthly de-trended time series of GPS-observed vertical deformation and GRACE-derived mass loading are in good agreement with an average correlation coefficient of about 0.75 throughout the Amazon region.The common seasonal signals of GPS vertical displacements and GRACE/GFO loading deformations are extracted using the stack averaging.The two kinds of common seasonal signals show a good consistency,and together indicate approximate 20 mm peak-to-peak seasonal amplitude.Strong annual variations are identified both in the monthly GPS and GRACE/GFO data by the wavelet analysis.However,the time-frequency spectrum of GPS has more signal details and more significant semi-annual variations than that of GRACE/GFO.These results may contribute to the understanding of secular crustal vertical deformation in the Amazon Basin.
基金funded by the N atural Science Foundation of China (G rants No. 11172217, 51279144 and 11432015)Chinese Academy of Sciences (G rant No. KZZDEW -05-01-03)
文摘Rivers often witness non-uniform bed load sedim ent transport. For a long tim e, non-uniform bed load transport has been assum ed to be at capacity regime determined exclusively by local flow. Yet whether the capacity assumption for non-uniform bed load transport is justified remains poorly understood. Here, the relative time scale of non-uniform bed load transport is evaluated and non-capacity and capacity models are compared for both aggradation and degradation cases with observed data. As characterized by its relative time scale, the adaptation of non-uniform bed load to capacity regime should be fulfilled quickly. However, changes in the flow and sedim ent inputs from upstream or tributaries hinder the adaptation. Also, the adaptation to capacity regime is size dependent, the finer the sediment size the slower the adaptation is, and vice versa. It is shown that the capacity model may entail considerable errors compared to the non-capacity model. For modelling of non-uniform bed load, non-capacity modelling is recommended, in which the temporal and spatial scales required for adaptation are explicitly appreciated.
基金Supported by National Natural Science Foundation of China(Grant No.U1134201)
文摘When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load–time histories is then deduced. Measured data from the Beijing–Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load–time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.
基金This project is supported by Provincial Natural Science Fundation of Hei-longjiang, China (No.E0311) and Provincial Key Project of Heilingjiang,China (No.G99A13-1).
文摘Based on the analyses of the structural feature and the function requirements of newstyle bottle cap, the two fundamental components, the lining washer and the outer body, are abstracted as a plate and a cylinder with thin wall respectively. For simulating the deformation of the lining washer under equiaxial pressure, the modified Lagrangian finite element analysis is applied on the 228 triangular elements. Under assembly pressure, the plastoelastic deformation of both the lining washer and the outer body are studied in terms of Tresca's yield criterion and the limitation of the plastic deformation is presented when the two components are assembled into one unit. For the production of this kind of bottle cover, experiments are carried out by carefully measuring the changes of the diameter of lining washer as well as that of the outer body. It is shown that results from the experiments have a good agreement with the theoretical calculation and the maximum value of the allowable pressure has successfully been used in the design of newly developed bottle cap production system.
基金supported by the National Natural Science Foundation of China (Grant No. 51776156)the Key Project of National Natural Science Foundation of China (Grant No. 51436007)+1 种基金111 Project (Grant No.B16038)the Fundamental Research Funds for the Central Universities(Grant No. xjj2018195)。
文摘As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver.
基金part of a research project supported by Korea Ministry of LandTransportation Maritime Affairs (MLTM) through Core Research Project 1 of Super Long Span Bridge R&D Centersupported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education,Science and Technology (2012R1A1A2007054)
文摘The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study,numerical solutions are presented and compared with the results obtained by other researchers and the detailed threedimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated.
基金supported by the Program of Excellent Team in Harbin Institute of Technology and the National Natural Science Foundation of China (10502017, 10432030)
文摘J ep -integral is derived for characterizing the frac- ture behavior of elastic-plastic materials. The J ep -integral differs from Rice’s J-integral in that the free energy density rather than the stress working density is employed to define energy-momentum tensor. The J ep -integral is proved to be path-dependent regardless of incremental plasticity and deformation plasticity. The J epintegral possesses clearly clear physical meaning: (1) the value J ep tip evaluated on the infinitely small contour surrounding the crack tip represents the crack tip energy dissipation; (2) when the global steadystate crack growth condition is approached, the value of J ep farss calculated along the boundary contour equals to the sum of crack tip dissipation and bulk dissipation of plastic zone. The theoretical results are verified by simulating mode I crack problems.
基金supported by the JCU Collaboration Grants Scheme awarded to L.Yin
文摘Porous pre-sintered zirconia is subject to white machining during which its elasticity, plasticity and resistance to machining-induced damage determine its machinability and final quality. This study used nanoindentation techniques and the Sakai's series elastic and plastic deformation model to extract the resistance to plastic deformation from the plane strain modulus and the contact hardness for presintered zirconia. The modulus and the resistance to plasticity were used to calculate the relative amount of elasticity and plasticity. The fracture energy and the normalized indentation absorbed energy were used to deconvolute the resistance to machining-induced cracking based on the Sakai-Nowak model. All properties were extracted at a 10 mN peak load and loading rates of 0.1-2 mN/s to determine the loading rate effects on these properties. We found that the resistance to plasticity and the resistance to machining-induced cracking were independent of the loading rate (ANOVA, p 〉 0.05). The elastic and plastic displacements depended on the loading rate through power laws. This loading rate-dependent deformation behaviour was explained by the maximum shear stress generated underneath the indenter and the indentation energy. The plastic deformation components and the indentation absorbed energy at all loading rates were higher than the elastic deformation components and the elastic strain energy, respectively. Finally, we established the linkage among the pore structure, indentation behaviour and machinability of pre-sintered zirconia.