Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,ru...Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.展开更多
The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measuremen...The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.展开更多
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor...This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.展开更多
Load distribution is a key technology in strip hot rolling process, which influences the coil's mierostrueture and performance. Currently, Newton-Raphson algorithm is applied to load distribution of hot tandem mills ...Load distribution is a key technology in strip hot rolling process, which influences the coil's mierostrueture and performance. Currently, Newton-Raphson algorithm is applied to load distribution of hot tandem mills in many hot rolling plants and has some serious defects such as having a strict restriction on initial iterative calculation value and requiring coefficient matrix of nonlinear equations to be nonsingular. To eliminate these defects and improve the online performance of the process control computer, Newton descendent numeric algorithm is introduced to this field to widen the initial value range and a new model named error conversion algorithm is put forth to deal with special conditions when the coefficient matrix is singular. Furthermore, considering the characteristics of load distribution, a condition of strip thickness distribution abnormality and corresponding solutions are provided which ensure that rolling parameters can be calculated normally. Simulation results show that the improved algorithm has overcome the defects of the Newton-Raphson algorithm and is suitable for online application.展开更多
The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur inv...The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.展开更多
Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profi...Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.展开更多
Regularity of longitudinal load distribution on gear tooth when tooth faces are contacted uniformly and when only tooth ends are contacted, and influence on distribution exerted by longitudinal correction and flexible...Regularity of longitudinal load distribution on gear tooth when tooth faces are contacted uniformly and when only tooth ends are contacted, and influence on distribution exerted by longitudinal correction and flexible gear structure, are studied in the paper with method of finite element calculation combined with experiment. Research shows that load concentration exists on the conditions of uniform contact or one-end contact, and in the later case the stress nonuniformity factor on root is 1.5 to 2.0 times larger than in the former case. It also verifies that longitudinal correction and increased flexibility of gear structure are effective to improve longitudinal load distribution.展开更多
Based on investigation and model tests, and in combination with the research work on group effect for pile groups under lateral loads relating to the code of fixed offshore platforms, a series of studies have been per...Based on investigation and model tests, and in combination with the research work on group effect for pile groups under lateral loads relating to the code of fixed offshore platforms, a series of studies have been performed on the behavior and failure mechanism of laterally loaded pile groups, critical pile spacing inducing group effect, lateral bearing capacity of pile groups and its main influence factors, the stress-strain relationship for single piles and pile groups and so on. Some new laws about non-uniformity of load distribution in the longitudinal direction of pile groups and load-deflection (p-y) curves for pile groups have been discovered, and an empirical formula is presented in order to remedy the defect of current calculating methods at home and abroad. These results can be used for reference in the design of pile foundation under lateral loads.展开更多
A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for...A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.展开更多
The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation...The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.展开更多
Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line...Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.展开更多
A new method of establishing rolling load distribution model was developed by online intelligent information-processing technology for plate rolling. The model combines knowledge model and mathematical model with usin...A new method of establishing rolling load distribution model was developed by online intelligent information-processing technology for plate rolling. The model combines knowledge model and mathematical model with using knowledge discovery in database (KDD) and data mining (DM) as the start. The online maintenance and optimization of the load model are realized. The effectiveness of this new method was testified by offline simulation and online application.展开更多
A dynamic analysis approcach to investigate the state of load distribution among contact bearings of double circular are belical gears is proposed and a computer program is developed for calculating the factor of iced...A dynamic analysis approcach to investigate the state of load distribution among contact bearings of double circular are belical gears is proposed and a computer program is developed for calculating the factor of iced distribution based on the theory of W-N gears. The changing situations of load distribution among contact bearings of the gears influenced by main issues are analyzed by a series of parametric studies.展开更多
Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models o...Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems.展开更多
The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of v...The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.展开更多
The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. ...The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.展开更多
At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accomm...At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network.展开更多
In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring pla...In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring plates is 120°, Its mass of middle ring plate is equal to that of side ring plate or 180°, and its inass of middle ring plate is twice of that of side ring plate, which affects load distribution between ring plates. The primary manufacturing and assembling errors include eccentric error of eccentric sheath E111, internal gear plate E1 and output external gear E11. A new theoretical method is presented in this paper, which converts load on ring plates into the dedendum bending stress of ring plate to calculate load distribution coefficient ( LDC ), by means of gap element method (GEM), one of finite element method (FEM). The theoretical calculation and experimental study, which measures ring plate dedendum bending stress by means of sticking strain gauges on the dedendum of middle ring plate internal gear and side ring plate internal gears, are presented. The theoretical calculation and comparison with experiment result of LDC are implemented an two kinds of three-ring gear reducers whose eccentric phase difference between eccentric sheaths is 120° and 180°respectively. The research indicates that the result of theoretical calculation is consistent with that of experimental study. That is to say, the theoretical calculation method is feasible.展开更多
A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of dr...A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power展开更多
In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous network...In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.展开更多
基金supported by the State Grid Science&Technology Project of China(5400-202224153A-1-1-ZN).
文摘Expanding photovoltaic(PV)resources in rural-grid areas is an essential means to augment the share of solar energy in the energy landscape,aligning with the“carbon peaking and carbon neutrality”objectives.However,rural power grids often lack digitalization;thus,the load distribution within these areas is not fully known.This hinders the calculation of the available PV capacity and deduction of node voltages.This study proposes a load-distribution modeling approach based on remote-sensing image recognition in pursuit of a scientific framework for developing distributed PV resources in rural grid areas.First,houses in remote-sensing images are accurately recognized using deep-learning techniques based on the YOLOv5 model.The distribution of the houses is then used to estimate the load distribution in the grid area.Next,equally spaced and clustered distribution models are used to adaptively determine the location of the nodes and load power in the distribution lines.Finally,by calculating the connectivity matrix of the nodes,a minimum spanning tree is extracted,the topology of the network is constructed,and the node parameters of the load-distribution model are calculated.The proposed scheme is implemented in a software package and its efficacy is demonstrated by analyzing typical remote-sensing images of rural grid areas.The results underscore the ability of the proposed approach to effectively discern the distribution-line structure and compute the node parameters,thereby offering vital support for determining PV access capability.
基金supported by the National Natural Science Foundation of China (Grant No. 12302238)the National Key Research and Development Program of China (Grant Nos. 2021YFB3400701, 2022YFB3402904)。
文摘The dynamic load distribution within in-service axlebox bearings of high-speed trains is crucial for the fatigue reliability assessment and forward design of axlebox bearings. This paper presents an in situ measurement of the dynamic load distribution in the four rows of two axlebox bearings on a bogie wheelset of a high-speed train under polygonal wheel–rail excitation. The measurement employed an improved strain-based method to measure the dynamic radial load distribution of roller bearings. The four rows of two axlebox bearings on a wheelset exhibited different ranges of loaded zones and different means of distributed loads. Besides, the mean value and standard deviation of measured roller–raceway contact loads showed non-monotonic variations with the frequency of wheel–rail excitation. The fatigue life of the four bearing rows under polygonal wheel–rail excitation was quantitatively predicted by compiling the measured roller–raceway contact load spectra of the most loaded position and considering the load spectra as input.
基金l’UniversitéLaval for the financial support of his sabbatical year at Dipartimento di Bioscienze e Territorio,Universitàdegli Studi del Molise in Campobasso,Italy。
文摘This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem.
基金Item Sponsored by National Natural Science Foundation of China (50504007)
文摘Load distribution is a key technology in strip hot rolling process, which influences the coil's mierostrueture and performance. Currently, Newton-Raphson algorithm is applied to load distribution of hot tandem mills in many hot rolling plants and has some serious defects such as having a strict restriction on initial iterative calculation value and requiring coefficient matrix of nonlinear equations to be nonsingular. To eliminate these defects and improve the online performance of the process control computer, Newton descendent numeric algorithm is introduced to this field to widen the initial value range and a new model named error conversion algorithm is put forth to deal with special conditions when the coefficient matrix is singular. Furthermore, considering the characteristics of load distribution, a condition of strip thickness distribution abnormality and corresponding solutions are provided which ensure that rolling parameters can be calculated normally. Simulation results show that the improved algorithm has overcome the defects of the Newton-Raphson algorithm and is suitable for online application.
基金Project(50875263) supported by the National Natural Science Foundation of ChinaProject(2011CB706800) supported by the National Basic Research Program of ChinaProject(2010ssxt172) supported by the Natural Science Foundation of Hunan Province,China
文摘The analytical method based on "Hertz theory on normal contact of elastic solids" and the numerical method based on finite element method (FEM) calculating the contact stress of face-gear drive with spur involute pinion were introduced, and their relative errors are below 10%, except edge contact, which turns out that these two methods can compute contact stress of face-gear drive correctly and effectively. An agreement of the localized bearing contact stress is gotten for these two methods, making sure that the calculation results of FEM are reliable. The loaded meshing simulations of multi-tooth FEM model were developed, and the determination of the transmission error and the maximal load distribution factor of face-gear drive under torques were given. A formula for the maximal load distribution factor was proposed. By introducing the maximal load distribution factor in multi-tooth contact zone, a method for calculating the maximal contact stress in multi-tooth contact can be given. Compared to FEM, the results of these formulae are proved to be reliable, and the relative errors are below 10%.
基金Projects(60904101,60972164) supported by the National Natural Science Foundation of ChinaProject(N090404009) supported by the Fundamental Research Funds for the Central UniversitiesProject(20090461187) supported by China Postdoctoral Science Foundation
文摘Voltage profiles of feeders with the connection of distributed generations(DGs) were investigated.A unified typical load distribution model was established.Based on this model,exact expressions of feeder voltage profile with single and double DGs were derived and used to analyze the impact of DG's location and capacity on the voltage profile quantitatively.Then,a general formula of the voltage profile was derived.The limitation of single DG and necessity of multiple DGs for voltage regulation were also discussed.Through the simulation,voltage profiles of feeders with single and double DGs were compared.The voltage excursion rate is 7.40% for only one DG,while 2.48% and 2.36% for double DGs.It is shown that the feeder voltage can be retained in a more appropriate range with multiple DGs than with only one DG.Distributing the total capacity of DGs is better than concentrating it at one point.
文摘Regularity of longitudinal load distribution on gear tooth when tooth faces are contacted uniformly and when only tooth ends are contacted, and influence on distribution exerted by longitudinal correction and flexible gear structure, are studied in the paper with method of finite element calculation combined with experiment. Research shows that load concentration exists on the conditions of uniform contact or one-end contact, and in the later case the stress nonuniformity factor on root is 1.5 to 2.0 times larger than in the former case. It also verifies that longitudinal correction and increased flexibility of gear structure are effective to improve longitudinal load distribution.
文摘Based on investigation and model tests, and in combination with the research work on group effect for pile groups under lateral loads relating to the code of fixed offshore platforms, a series of studies have been performed on the behavior and failure mechanism of laterally loaded pile groups, critical pile spacing inducing group effect, lateral bearing capacity of pile groups and its main influence factors, the stress-strain relationship for single piles and pile groups and so on. Some new laws about non-uniformity of load distribution in the longitudinal direction of pile groups and load-deflection (p-y) curves for pile groups have been discovered, and an empirical formula is presented in order to remedy the defect of current calculating methods at home and abroad. These results can be used for reference in the design of pile foundation under lateral loads.
基金sponsored by projects (Grant Nos. 50978172, 51078318) of the National Natural Science Foundation of ChinaProject (Grant No. 10-0667) supposed by the New Century Excellent Talents in University
文摘A section of the Nanliang high speed railway tunnel on Shijiazhuang-Taiyuan high-speed passenger railway line in China was instrumented and studied for its mechanical properties and performances. The cross section for the tunnel was300 m2and is classified as the largest cross section for railway tunnels in China. Through in situ experimental studies, mechanistic properties of the tunnel were identified, including the surrounding rock pressure, convergences along tunnel perimeter and safety of primary support and lining structure.Based on the field measured data, the surrounding rock pressure demand for large-span deep tunnel in hard rock is recommended as double peak type in the vertical direction and fold line type was recommended for horizontal pressure. The results suggested that Promojiyfakonov's theory was most close to the monitored value. Specific recommendations were also generated for the use of bolts in tunnel structures.Numerical simulation was used to evaluate the safety of the tunnel and it confirmed that the current design can satisfy the requirement of the current code.
基金supported by the National Nature Science Foundation of China(No.12072007)the Ningbo Nature Science Foundation(No.202003N4018)+1 种基金the Aeronautical Science Foundation of China (No. 20182951014)the Defense Industrial Technology Development Program(No.JCKY2019209C004)
文摘The determination of the dynamic load is one of the indispensable technologies for structure design and health monitoring for aerospace vehicles.However,it is a significant challenge to measure the external excitation directly.By contrast,the technique of dynamic load identification based on the dynamic model and the response information is a feasible access to obtain the dynamic load indirectly.Furthermore,there are multi-source uncertainties which cannot be neglected for complex systems in the load identification process,especially for aerospace vehicles.In this paper,recent developments in the dynamic load identification field for aerospace vehicles considering multi-source uncertainties are reviewed,including the deterministic dynamic load identification and uncertain dynamic load identification.The inversion methods with different principles of concentrated and distributed loads,and the quantification and propagation analysis for multi-source uncertainties are discussed.Eventually,several possibilities remaining to be explored are illustrated in brief.
基金National Natural Science Foundation of China Under Grant No.50378063
文摘Based on one type of practical Biot's equation and the dynamic-stiffness matrices ofa poroelastic soil layer and half-space, Green's functions were derived for unitformly distributed loads acting on an inclined line in a poroelastie layered site. This analysis overcomes significant problems in wave scattering due to local soil conditions and dynamic soil-structure interaction. The Green's functions can be reduced to the case of an elastic layered site developed by Wolf in 1985. Parametric studies are then carried out through two example problems.
文摘A new method of establishing rolling load distribution model was developed by online intelligent information-processing technology for plate rolling. The model combines knowledge model and mathematical model with using knowledge discovery in database (KDD) and data mining (DM) as the start. The online maintenance and optimization of the load model are realized. The effectiveness of this new method was testified by offline simulation and online application.
文摘A dynamic analysis approcach to investigate the state of load distribution among contact bearings of double circular are belical gears is proposed and a computer program is developed for calculating the factor of iced distribution based on the theory of W-N gears. The changing situations of load distribution among contact bearings of the gears influenced by main issues are analyzed by a series of parametric studies.
基金Project supported by the National Natural Science Foundation of China(Grant No.61871046).
文摘Many complex networks in real life are embedded in space and most infrastructure networks are interdependent,such as the power system and the transport network.In this paper,we construct two cascading failure models on the multilayer spatial network.In our research,the distance l between nodes within the layer obeys the exponential distribution P(l)~exp(-l/ζ),and the length r of dependency link between layers is defined according to node position.An entropy approach is applied to analyze the spatial network structure and reflect the difference degree between nodes.Two metrics,namely dynamic network size and dynamic network entropy,are proposed to evaluate the spatial network robustness and stability.During the cascading failure process,the spatial network evolution is analyzed,and the numbers of failure nodes caused by different reasons are also counted,respectively.Besides,we discuss the factors affecting network robustness.Simulations demonstrate that the larger the values of average degree<k>,the stronger the network robustness.As the length r decreases,the network performs better.When the probability p is small,asζdecreases,the network robustness becomes more reliable.When p is large,the network robustness manifests better performance asζincreases.These results provide insight into enhancing the robustness,maintaining the stability,and adjusting the difference degree between nodes of the embedded spatiality systems.
基金Project(51178342)supported by the National Natural Science Foundation of ChinaProject(KLE-TJGE-C1301)supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education(Tongji University)under the International Cooperation and Exchange Program,China
文摘The boundary between the near and far fields is generally defined as the distance from the vibration source beyond which ground vibrations are mainly dominated by Rayleigh waves. It is closely related to the type of vibration source and the soil properties. Based on the solutions of the Lamb's problem, the boundary at the surface between the near and far fields of ground vibration was investigated for a harmonic vertical concentrated load and an infinite line load at the surface of a visco-elastic half-space. Particularly, the variation of the boundary with the material damping was investigated for both cases. The results indicate that the material damping slightly contributes to the attenuation of vibrations in the near-source region, but significantly reduces the vibrations in the region that is at some distance away from the source. When taking the material damping into consideration, the boundary between the near and far fields tends to move towards the vibration source. Compared with the vibrations caused by a concentrated load, the vibrations induced by an infinite line load can affect a larger range of the surrounding environment, and they attenuate more slowly. This means the boundary between the near field and far field should move fitrther away from the source. Finally, the boundaries are defined in terms of R-wave length (2R) and Poisson ratio of the ground (o). For the case of a point load, the boundary is located at the distance of (5.0-6.0)2R for v≤0.30 and at the distance of (2.0--3.0)2R for v≥0.35. For the case of an infinite line load, the boundary is located at the distance (5.5-6.5)2rt for v≤0.30 and at the distance (2.5--3.5)2R for v≥0.35.
基金Project supported by the National Natural Science Foundation of China(Nos.10472102 and 10432030)
文摘The bending problem of a functionally graded anisotropic cantilever beam subjected to a linearly distributed load is investigated. The analysis is based on the exact elasticity equations for the plane stress problem. The stress function is introduced and assumed in the form of a polynomial of the longitudinal coordinate. The expressions for stress components are then educed from the stress function by simple differentiation. The stress function is determined from the compatibility equation as well as the boundary conditions by a skilful deduction. The analytical solution is compared with FEM calculation, indicating a good agreement.
基金supported by the Science and Technology Project of Zhangjiakou Power Supply Company of State Grid Jibei Co.,Ltd.(SGJBZJ00YJJS2001096).
文摘At present,the large-scale access to electric vehicles(EVs)is exerting considerable pressure on the distribution network.Hence,it is particularly important to analyze the capacity of the distribution network to accommodate EVs.To this end,we propose a method for analyzing the EV capacity of the distribution network by considering the composition of the conventional load.First,the analysis and pretreatment methods for the distribution network architecture and conventional load are proposed.Second,the charging behavior of an EVis simulated by combining the Monte Carlo method and the trip chain theory.After obtaining the temporal and spatial distribution of the EV charging load,themethod of distribution according to the proportion of the same type of conventional load among the nodes is adopted to integrate the EV charging load with the conventional load of the distribution network.By adjusting the EV ownership,the EV capacity in the distribution network is analyzed and solved on the basis of the following indices:node voltage,branch current,and transformer capacity.Finally,by considering the 10-kV distribution network in some areas of an actual city as an example,we show that the proposed analysis method can obtain a more reasonable number of EVs to be accommodated in the distribution network.
基金Sponsored by the National Natural Science Foundation of China(Grant No.59575007).
文摘In this paper, primary manufacturing and assembling errors of three-ring gear reducer (TRGR) are analyzed. TRGR is a new transmission type whose eccentric phase difference between middle ring plate and side ring plates is 120°, Its mass of middle ring plate is equal to that of side ring plate or 180°, and its inass of middle ring plate is twice of that of side ring plate, which affects load distribution between ring plates. The primary manufacturing and assembling errors include eccentric error of eccentric sheath E111, internal gear plate E1 and output external gear E11. A new theoretical method is presented in this paper, which converts load on ring plates into the dedendum bending stress of ring plate to calculate load distribution coefficient ( LDC ), by means of gap element method (GEM), one of finite element method (FEM). The theoretical calculation and experimental study, which measures ring plate dedendum bending stress by means of sticking strain gauges on the dedendum of middle ring plate internal gear and side ring plate internal gears, are presented. The theoretical calculation and comparison with experiment result of LDC are implemented an two kinds of three-ring gear reducers whose eccentric phase difference between eccentric sheaths is 120° and 180°respectively. The research indicates that the result of theoretical calculation is consistent with that of experimental study. That is to say, the theoretical calculation method is feasible.
基金Project supported by the National Natural Science Foundation of China (Grant No 10035020).
文摘A two-dimensional, three-temperature radiation magneto-hydrodynamics model is applied to the investigation of evolutional trends in x-ray radiation power, energy, peak plasma temperature and density as functions of drive current rise-time and initial load density distribution by using the typical experimental parameters of tungsten wire-array Z- pinch on the Qiangguang-I generator. The numerical results show that as the drive current rise-time is shortened, x-ray radiation peak power, energy, peak plasma density and peak ion temperature increase approximately linearly, but among them the x-ray radiation peak power increases more quickly. As the initial plasma density distribution in the radial direction becomes gradually flattened, the peak radiation power and the peak ion-temperature almost exponentially increase, while the radiation energy and the peak plasma density change only a little. The main effect of shortening drive current rise-time is to enhance compression of plasma, and the effect of flattening initial load density distribution in the radial direction is to raise the plasma temperature. Both of the approaches elevate the x-ray peak radiation power
基金partially supported by the computing power networks and new communication primitives project under Grant No. HC-CN-2020120001the National Natural Science Foundation of China under Grant No. 62102066Open Research Projects of Zhejiang Lab under Grant No. 2022QA0AB02
文摘In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.