A monolithic integrated two-section distributed feedback(TS-DFB)semiconductor laser for high-speed direct modulation is proposed and analyzed theoretically.The grating structure of the TS-DFB laser is designed by the ...A monolithic integrated two-section distributed feedback(TS-DFB)semiconductor laser for high-speed direct modulation is proposed and analyzed theoretically.The grating structure of the TS-DFB laser is designed by the reconstructionequivalent-chirp(REC)technique,which can reduce the manufacturing cost and difficulty,and achieve high wavelength controlling accuracy.The detuned loading effect and the photon-photon resonance(PPR)effect are utilized to enhance the modulation bandwidth of the TS-DFB laser,exceeding 37 GHz,while that of the conventional one-section DFB laser is only 16 GHz.When the bit rate of the non-return-to-zero(NRZ)signal reaches 55 Gb/s,a clear eye diagram with large opening can still be obtained.These results show that the proposed method can enhance the modulation bandwidth of DFB laser significantly.展开更多
Modulation bandwidth enhancement in a directly modulated two-section distributed feedback(TS-DFB)laser based on a detuned loading effect is investigated and experimentally demonstrated.The results show that the 3-dB b...Modulation bandwidth enhancement in a directly modulated two-section distributed feedback(TS-DFB)laser based on a detuned loading effect is investigated and experimentally demonstrated.The results show that the 3-dB bandwidth of the TS-DFB laser is increased to 17.6 GHz and that chirp parameter can be reduced to 2.24.Compared to the absence of a detuned loading effect,there is a 4.6 GHz increase and a 2.45 reduction,respectively.After transmitting a 10 Gb/s non-return-to-zero(NRZ)signal through a 5-km fiber,the modulation eye diagram still achieves a large opening.Eight-channel laser arrays with precise wavelength spacing are fabricated.Each TS-DFB laser in the array has side mode suppression ratios(SMSR)>49.093 dB and the maximum wavelength residual<0.316 nm.展开更多
During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance...During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance showed the dependence of the population on these fluctuations, which could be bypassed or suppressed. In most cases, the blackout occurs during high energy demand. In this paper, a method for evaluating electrical efficiency is proposed and its credibility has been demonstrated on the one hand, and on the other hand, a renewable energy production system is proposed. The Homer software has made possible the analysis of the proposed system and its impact on the environment has also been carried out. The techno-economic study of the system has proved that a solar photovoltaic farm associated with an energy storage system, with a capacity of 47 MW, can meet the energy demand of the town of Maroua. This alternative is profitable for this locality which lives in a precarious situation and a continuous need.展开更多
The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial load...The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial loading rate in coal and rock mechanics test.Therefore,uniaxial compression tests under various loading rates of 0.05,0.1,0.15,0.25,0.5 MPa/s were conducted using 2000 kN triaxial testing machine and PCI-2 acoustic emission test system to study the loading rate effect on the mechanical properties of deep sandstones.The results show that 1)the peak strength and elastic modulus of the deep sandstone increase with the loading rate increasing;2)with the loading rate increasing,the deep sandstone transforms from plastic-elastic-plastic to plastic-elastic and moreover,the failure mode gradually transfers from type I to type III;3)With the loading rate increasing,the total input strain energy,elastic strain energy,and dissipated strain energy generally increase;4)the damage variable presents the evolution characteristics of inverted“S”shape with time,and with the loading rate increasing,the damage degree of the deep sandstone is aggravated.The conclusion obtained can provide the theoretical basis for the stability control of the surrounding rock in deep engineering.展开更多
Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to...Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.展开更多
This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to st...This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.展开更多
To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response a...To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed.In line with the theory of mechanical vibration,a dynamic model of crane structure during the working cycle is constructed,and dynamic coefficients under diverse actions are analysed.Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria,which is utilised to extract the change of first principal stress of danger points over time.Then,the double-parameter stress spectrum is obtained by the rain flow counting method.The fatigue life calculation formula is corrected by introducing a crack closure parameter that can be calculated by the stress ratio and the effective stress ratio.Under the finite element model imported into Msc.Patran,crack propagation analysis is performed by the growth method in the fatigue integration module Msc.Fatigue.Taking the metal structure of a 100/40t-28.5m foundry crane with track offset as an example,the accuracy of calculation results and the feasibility and applicability of the proposed method are verified by theoretical calculation and finite element simulation,which provide a theoretical basis for improvement of the fatigue resistance design of foundry cranes.展开更多
The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key feat...The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia(HMA).We also present the patterns of amplitudes and phases of annual and semiannual change.The mechanism underlying the semiannual period is explicitly discussed.The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given.A case study applied with these equations is presented.The results show that Global Positioning System(GPS) observations can be used to compare with Gravity Recovery and Climate Experiment(GRACE) derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions.展开更多
The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increa...The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increasing the number of cycles, while A(s) and A(f) temperature decrease during thermal cycling. The total strain at and permanent strain epsilon (p) increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations.展开更多
Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was...Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotropic characteristics.展开更多
Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working proces...Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.展开更多
The influence of loading path on tube hydroforming process is discussed in this paper with finiteelement simulation. Four different loading paths are utilized in simulating the forming process of square tubular compo...The influence of loading path on tube hydroforming process is discussed in this paper with finiteelement simulation. Four different loading paths are utilized in simulating the forming process of square tubular component with hydroforming and the result of different loading path is presented. Among the result. the thickness distribution of bilinear loading path is the most uniform one. It shows that the increase of punch displacement in the stage of high pressure is beneficial to the forming of component for optimized Stress condition.展开更多
Magma is generated mostly in the Earth’s mantle by decompression melting and transported through the crust to reach the Earth’s surface.The main mechanism for magma transport is diking,but the pathways taken by
The braking quality is considered the main execution of the adaptive control framework that impacts the vehicle safety and rides solace astoundingly notably the stopping distance.This research work aims to create a pa...The braking quality is considered the main execution of the adaptive control framework that impacts the vehicle safety and rides solace astoundingly notably the stopping distance.This research work aims to create a pattern and design of an electromechanically adjusted lever that multiplies the applied braking force depending on the inputs given by the sensors to reduce the stopping distance of the vehicle.It is carried out using two main parts of the two-wheeler vehicle:thefirst part deals with the detection of load acting on the vehicle and identifying the required braking force to be applied,and the second part deals with the micro-controller which activates the stepper motor for varying the mechanical leverage ratio from various loads on the vehicle using two actively movable wedges.The electromechanically operated variable braking force system is developed to actuate the braking system based on the load on the motorcycle.The MATLAB simulation and experimental work are carried out for various loading(driver and pillion)conditions on a two-wheeler.The results indicate that the proposed electronically operated braking system is more effective than the conventional braking system for various loads and vehicle speeds.Specifically,the stopping distance of the vehicle is decreased significantly by about 4.9%between the con-ventional braking system and the simulated proposed system.Further,the experi-mental results show that the stopping distance is condensed by about 4.1%.The validation between simulated and experimental results revealed a great deal with the least error percentage of about 0.8%.展开更多
The present study was conducted to evaluate the role of effective microbial supplementation to feed on the load of Salmonella in the mesenteric and sub-iliac lymph nodes of beef cattle. Bulls of Harer cattle breed man...The present study was conducted to evaluate the role of effective microbial supplementation to feed on the load of Salmonella in the mesenteric and sub-iliac lymph nodes of beef cattle. Bulls of Harer cattle breed managed at Chercher Oda-Bultum Farmers Union beef Farm were used as study subject. A total of 130 bulls were used using double blinded randomized controlled field trial based on parallel group design from January 2018 to July 2018. The study animals were randomly assigned to the treatment group (n = 100) and control group (n = 30). The feed of treatment group was mixed with EM at dose of 5 × 10<sup>10</sup> cfu/day/head and supplemented for 90, 100 and 115 days while that of the control group was mixed with molasses, which acts as placebo. Both the treatment and control were slaughtered and two lymph nodes were collected from each animal under strict sterile condition and processed for the isolation and identification of Salmonella using standard procedure. A significant (p = 0.001) reduction in the load of Salmonella was observed in the lymph node of treatment group as compared to the control group. The load of Salmonella was significantly affected by length of feeding period and age of bulls. This study indicated that effective microbial supplementation to bulls from Harar cattle reduces the load of Salmonella in the lymph node of beef cattle thereby potentially minimizing the economic and public health impacts of Salmonella infection.展开更多
This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear ...This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.展开更多
This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stre...This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.展开更多
基金the National Key Research and Development Program of China(Grant No.2020YFB2205804)the National Natural Science Foundation of China(Grant Nos.61974165 and Grant 61975075)the National Natural Science Foundation of China for the Youth,China(Grant No.62004105)。
文摘A monolithic integrated two-section distributed feedback(TS-DFB)semiconductor laser for high-speed direct modulation is proposed and analyzed theoretically.The grating structure of the TS-DFB laser is designed by the reconstructionequivalent-chirp(REC)technique,which can reduce the manufacturing cost and difficulty,and achieve high wavelength controlling accuracy.The detuned loading effect and the photon-photon resonance(PPR)effect are utilized to enhance the modulation bandwidth of the TS-DFB laser,exceeding 37 GHz,while that of the conventional one-section DFB laser is only 16 GHz.When the bit rate of the non-return-to-zero(NRZ)signal reaches 55 Gb/s,a clear eye diagram with large opening can still be obtained.These results show that the proposed method can enhance the modulation bandwidth of DFB laser significantly.
文摘Modulation bandwidth enhancement in a directly modulated two-section distributed feedback(TS-DFB)laser based on a detuned loading effect is investigated and experimentally demonstrated.The results show that the 3-dB bandwidth of the TS-DFB laser is increased to 17.6 GHz and that chirp parameter can be reduced to 2.24.Compared to the absence of a detuned loading effect,there is a 4.6 GHz increase and a 2.45 reduction,respectively.After transmitting a 10 Gb/s non-return-to-zero(NRZ)signal through a 5-km fiber,the modulation eye diagram still achieves a large opening.Eight-channel laser arrays with precise wavelength spacing are fabricated.Each TS-DFB laser in the array has side mode suppression ratios(SMSR)>49.093 dB and the maximum wavelength residual<0.316 nm.
文摘During the years 2021 and 2022, the city of Maroua experienced repeated power blackouts. However, this locality has significant photovoltaic energy potential. Nevertheless, the evaluation of the electrical performance showed the dependence of the population on these fluctuations, which could be bypassed or suppressed. In most cases, the blackout occurs during high energy demand. In this paper, a method for evaluating electrical efficiency is proposed and its credibility has been demonstrated on the one hand, and on the other hand, a renewable energy production system is proposed. The Homer software has made possible the analysis of the proposed system and its impact on the environment has also been carried out. The techno-economic study of the system has proved that a solar photovoltaic farm associated with an energy storage system, with a capacity of 47 MW, can meet the energy demand of the town of Maroua. This alternative is profitable for this locality which lives in a precarious situation and a continuous need.
基金Projects(52034009, 51974319) supported by the National Natural Science Foundation of ChinaProject(2020JCB01)supported by the Yue Qi Distinguished Scholar Project of China。
文摘The advance speed of the working face in coal mines can significantly affect the fluctuation frequency of abutment pressure in front of the coal body.Moreover,it has a certain correlation with the change of axial loading rate in coal and rock mechanics test.Therefore,uniaxial compression tests under various loading rates of 0.05,0.1,0.15,0.25,0.5 MPa/s were conducted using 2000 kN triaxial testing machine and PCI-2 acoustic emission test system to study the loading rate effect on the mechanical properties of deep sandstones.The results show that 1)the peak strength and elastic modulus of the deep sandstone increase with the loading rate increasing;2)with the loading rate increasing,the deep sandstone transforms from plastic-elastic-plastic to plastic-elastic and moreover,the failure mode gradually transfers from type I to type III;3)With the loading rate increasing,the total input strain energy,elastic strain energy,and dissipated strain energy generally increase;4)the damage variable presents the evolution characteristics of inverted“S”shape with time,and with the loading rate increasing,the damage degree of the deep sandstone is aggravated.The conclusion obtained can provide the theoretical basis for the stability control of the surrounding rock in deep engineering.
基金Supported by National High Technology Research and Development Program of China (Grant No.2011AA11A265)National Natural Science Foundation of China (Grant Nos.50875173,51105241)Shanghai Municipal Natural Science Foundation of China (Grant No.11ZR1414700)
文摘Lightweight design requires an accurate life prediction for structures and components under service loading histories. However, predicted life with the existing methods seems too conservative in some cases, leading to a heavy structure. Because these methods are established on the basis that load cycles would only cause fatigue damage, ignore the strengthening effect of loads. Based on Palmgren-Miner Rule (PMR), this paper introduces a new method for fatigue life prediction under service loadings by taking into account the strengthening effect of loads below the fatigue limit. In this method, the service loadings are classified into three categories: damaging load, strengthening load and none-effect load, and the process for fatigue life prediction is divided into two stages: stage I and stage II, according to the best strengthening number of cycles. During stage I, fatigue damage is calculated considering both the strengthening and damaging effect of load cycles. While during stage II, only the damaging effect is considered. To validate this method, fatigue lives of automobile half shaft and torsion beam rear axle are calculated based on the new method and traditional methods, such as PMR and Modified Miner Rule (MMR), and fatigue tests of the two components are conducted under service loading histories. The tests results show that the percentage errors of the predicted life with the new method to mean life of tests for the two components are –3.78% and –1.76% separately, much lesser than that with PMR and MMR. By considering the strengthening effect of loads below the fatigue limit, the new method can significantly improve the accuracy for fatigue life prediction. Thus lightweight design can be fully realized in the design stage.
基金The Technical Research Program from NV Bekaert SA of Belgium (No. 8612000003)the National Natural Science Foundation of China (No. 50908047)
文摘This study aims to reveal the mechanism that how the content of steel fibers and strength grades affect the macro performance of the ultra-high performance fiber reinforced cementitious composite (UHPFRCC) and to study the UHPFRCC durability under the combined effect of loads and environments. Three types of high and ultra-high performance fiber reinforced cement composites with different strength grades (100, 150, 200 MPa) and different steel fiber volume fractions (0%, 1%, 2%, 3%) are prepared. The main properties of mechanical performance and short-term durability are studied. A preloading frame is designed to apply a four- point load external flexural stress with a stress selection ratio of 0.5 for UHPFRCC150 specimens. The results show that the growth in strength grade with a proper content of steel fiber greatly increases the strength and toughness of the HPFRCC and the UHPFRCC while decreasing the dry-shrinkage ratio. For the loaded specimens, the existence of steel fiber can reduce the negative influence of tensile stress on the Cl- penetration resistance of the UHPFRCC in addition to improving its ability to resist the freeze-thaw damage.
基金the National Science-technology Support Projects for the 13th Five-year Plan(2017YFC0805703-4).
文摘To compensate for the shortcomings of quasi-static law in anti-fatigue analysis of foundry crane metal structures,the fatigue life evaluation method of foundry crane metal structure considering load dynamic response and crack closure effect is proposed.In line with the theory of mechanical vibration,a dynamic model of crane structure during the working cycle is constructed,and dynamic coefficients under diverse actions are analysed.Calculation models of the internal force dynamic change process of dangerous cross-sections and a simulation model of first principal stress-time history are established by using the steel structure design criteria,which is utilised to extract the change of first principal stress of danger points over time.Then,the double-parameter stress spectrum is obtained by the rain flow counting method.The fatigue life calculation formula is corrected by introducing a crack closure parameter that can be calculated by the stress ratio and the effective stress ratio.Under the finite element model imported into Msc.Patran,crack propagation analysis is performed by the growth method in the fatigue integration module Msc.Fatigue.Taking the metal structure of a 100/40t-28.5m foundry crane with track offset as an example,the accuracy of calculation results and the feasibility and applicability of the proposed method are verified by theoretical calculation and finite element simulation,which provide a theoretical basis for improvement of the fatigue resistance design of foundry cranes.
基金supported financially by the National Natural Science Foundation of China(41174063,41331066 and41474059)the CAS/CAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)the SKLGED Foundation(2014-1-1-E)
文摘The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia(HMA).We also present the patterns of amplitudes and phases of annual and semiannual change.The mechanism underlying the semiannual period is explicitly discussed.The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given.A case study applied with these equations is presented.The results show that Global Positioning System(GPS) observations can be used to compare with Gravity Recovery and Climate Experiment(GRACE) derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions.
文摘The effect of thermal cycling under loading on martensitic transformation and two-way shape memory effect was investigated for Ti-49.8 at, pet Ni alloy. It is shown that M(s), and M(f) temperature increase with increasing the number of cycles, while A(s) and A(f) temperature decrease during thermal cycling. The total strain at and permanent strain epsilon (p) increase with increasing applied stress and number of cycles. The two-way shape memory effect can be improved by proper thermal cycling training under loading, while excessively high applied stress results in the deterioration of TWSME. The reason for the changes in martensitic transformation characteristics and two-way shape memory effect during thermal cycling under loading is discussed based on the analysis of microstructure by TEM observations.
基金Supported by the National Natural Science Foundation of China(51064009,51464015)the Natural Science Foundation of Guangdong Province of China(2016A030313121)+1 种基金the Higher School Talent Introduction Project of Guangdong Province(A413.0210)the Science and Technology Project of Huizhou City of Guangdong Province of China(2014B020004018)
文摘Model test studies based on the similarity theory were conducted to investigate vibration effect and damage evolution characteristics of tunnel surrounding rock under push-type cyclic blasting excavation.The model was constructed with a ratio of 1∶15.By simulating the tunnel excavation of push-type cyclic blasting,the influence of the blasting parameter change on vibration effect was explored.The damage degree of tunnel surrounding rock was evaluated by the change of the acoustic wave velocity at the same measuring point after blasting.The relationship between the damage evolution of surrounding rock and blasting times was established.The research results show that:(1)In the same geological environment,the number of delay initiation is larger,the main vibration frequency of blasting seismic wave is higher,and the attenuation of high frequency signal in the rock and soil is faster.The influence of number of delay initiation on blasting vibration effect cannot be ignored;(2)Under push-type cyclic blasting excavation,there were great differences in the decreasing rates of acoustic wave velocity of the measuring points which have the same distance to the blasting region at the same depth,and the blasting damage ranges of surrounding rock were typically anisotropic at both depth and breadth;(3)When blasting parameters were basically kept as the same,the growth trend of the cumulative acoustic wave velocity decreasing rate at the measuring point was nonlinear under different cycle blasting excavations;(4)There were nonlinear evolution characteristics between the blasting cumulative damage(D)of surrounding rock and blasting times(n)under push-type cyclic blasting loading,and different measuring points had corresponding blasting cumulative damage propagation models,respectively.The closer the measuring point was away from the explosion source,the faster the cumulative damage extension.Blasting cumulative damage effect of surrounding rock had typically nonlinear evolution properties and anisotropic characteristics.
基金supported by the National Natural Science Foundation of China(11622217)the National Key Project of Scientific Instrument and Equipment Development(11327802)+1 种基金the National Program for Special Support of Top-Notch Young Professionalssupported by the Fundamental Research Funds for the Central Universities(lzujbky-2017-ot18,lzujbky-2017-k18)
文摘Twist structures have diverse applications, ranging from dragline, electrical cable, and intelligent structure. Among these applications, tension deformation can't be avoided during the fabrication and working processes, which often leads to the twist structure rotation (called untwisting effect) and twist pitch increasing. As a consequence, this untwisting behavior has a large effect on the effective Young's modulus. In this paper, we present an improved model based on the classical Costello's theory to predict the effective Young's modulus of the basic structure, twisted by three same copper strands under cyclic loading. Series of experiments were carried out to verify the present model taking into account the untwisting effect. The experimental results have better agreements with the presented model than the common Costello's model.
基金Tabs paper is financially suPPorted by the NationalNatural Science Foundation of China (No. 59975021).
文摘The influence of loading path on tube hydroforming process is discussed in this paper with finiteelement simulation. Four different loading paths are utilized in simulating the forming process of square tubular component with hydroforming and the result of different loading path is presented. Among the result. the thickness distribution of bilinear loading path is the most uniform one. It shows that the increase of punch displacement in the stage of high pressure is beneficial to the forming of component for optimized Stress condition.
文摘Magma is generated mostly in the Earth’s mantle by decompression melting and transported through the crust to reach the Earth’s surface.The main mechanism for magma transport is diking,but the pathways taken by
文摘The braking quality is considered the main execution of the adaptive control framework that impacts the vehicle safety and rides solace astoundingly notably the stopping distance.This research work aims to create a pattern and design of an electromechanically adjusted lever that multiplies the applied braking force depending on the inputs given by the sensors to reduce the stopping distance of the vehicle.It is carried out using two main parts of the two-wheeler vehicle:thefirst part deals with the detection of load acting on the vehicle and identifying the required braking force to be applied,and the second part deals with the micro-controller which activates the stepper motor for varying the mechanical leverage ratio from various loads on the vehicle using two actively movable wedges.The electromechanically operated variable braking force system is developed to actuate the braking system based on the load on the motorcycle.The MATLAB simulation and experimental work are carried out for various loading(driver and pillion)conditions on a two-wheeler.The results indicate that the proposed electronically operated braking system is more effective than the conventional braking system for various loads and vehicle speeds.Specifically,the stopping distance of the vehicle is decreased significantly by about 4.9%between the con-ventional braking system and the simulated proposed system.Further,the experi-mental results show that the stopping distance is condensed by about 4.1%.The validation between simulated and experimental results revealed a great deal with the least error percentage of about 0.8%.
文摘The present study was conducted to evaluate the role of effective microbial supplementation to feed on the load of Salmonella in the mesenteric and sub-iliac lymph nodes of beef cattle. Bulls of Harer cattle breed managed at Chercher Oda-Bultum Farmers Union beef Farm were used as study subject. A total of 130 bulls were used using double blinded randomized controlled field trial based on parallel group design from January 2018 to July 2018. The study animals were randomly assigned to the treatment group (n = 100) and control group (n = 30). The feed of treatment group was mixed with EM at dose of 5 × 10<sup>10</sup> cfu/day/head and supplemented for 90, 100 and 115 days while that of the control group was mixed with molasses, which acts as placebo. Both the treatment and control were slaughtered and two lymph nodes were collected from each animal under strict sterile condition and processed for the isolation and identification of Salmonella using standard procedure. A significant (p = 0.001) reduction in the load of Salmonella was observed in the lymph node of treatment group as compared to the control group. The load of Salmonella was significantly affected by length of feeding period and age of bulls. This study indicated that effective microbial supplementation to bulls from Harar cattle reduces the load of Salmonella in the lymph node of beef cattle thereby potentially minimizing the economic and public health impacts of Salmonella infection.
文摘This paper is a continuation of [1]. A closed form solution to the second order elasticity problem, when an isotropic compressible elastic half-space undergoes a deformation owing to a non-uniformly distributed shear load, is presented. The method of integral transform is employed to determine the solutions.
文摘This paper is a continuation of [1]. An example is discussed in derail to illustrate the second order effects. Numerical calculations for the second order elastic material for the z-direction displacement and the stress t(rz) are carried out. It is found that the second order effect is to reduce z-direction displacement and to decrease t(rz)inside the circle but to increase its value outside the circle.