期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pollutant removal from municipal wastewater employing baffled subsurface flow and integrated surface flow-floating treatment wetlands 被引量:7
1
作者 Tanveer Saeed Abdullah Al-Muyeed +2 位作者 Rumana Afrin Habibur Rahman Guangzhi Sun 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第4期726-736,共11页
This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangla... This article reports pollutant removal performances of baffled subsurface flow, and integrated surface flow-floating treatment wetland units, when arranged in series for the treatment of municipal wastewater in Bangladesh. The wetland units (of the hybrid system) included organic, inorganic media, and were planted with nineteen types of macrophytes. The wetland train was operated under hydraulic loading fluctuation and seasonal variation. The performance analyses (across the wetland units) illustrated simultaneous denitrification and organics removal rates in the first stage vertical flow wetland, due to organic carbon leaching from the employed organic media. Higher mean organics removal rates (656.0 g COD](m2.day)) did not completely inhibit nitrification in the first stage vertical flow system; such pattern could be linked to effective utilization of the trapped oxygen, as the flow was directed throughout the media by the baffle walls. Second stage horizontal flow wetland showed enhanced biodegradable organics removal, which depleted organic carbon availability for denitrification. The final stage integrated wetland system allowed further nitrogen removal from wastewater, via nutrient uptake by plant roots (along with nitrification), and generation of organic carbon (by the dead macrophytes) to support denitrification. The system achieved higher E. coli mortality through protozoa predation, E. coli oxidation, and destruction by UV radiation. In general, enhanced pollutant removal efflciencies as demonstrated by the structurally modified hybrid wetland system signify the necessity of such modification, when operated under adverse conditions such as: substantial input organics loading, hydraulic loading fluctuation, and seasonal variation. 展开更多
关键词 constructed wetlands loading fluctuation media nitrogen organics seasonal variation
原文传递
Experimental investigation into transient pressure pulses during pneumatic conveying of fine powders using Shannon entropy 被引量:3
2
作者 Amit Goel Anu Mittal +1 位作者 S.S. Mallick Atul Sharma 《Particuology》 SCIE EI CAS CSCD 2016年第6期143-153,共11页
This paper presents the results of an ongoing investigation into transient pressure pulses using Shan- non entropy. Pressure fluctuations (produced by gas-solid two-phase flow during fluidized dense-phase conveying)... This paper presents the results of an ongoing investigation into transient pressure pulses using Shan- non entropy. Pressure fluctuations (produced by gas-solid two-phase flow during fluidized dense-phase conveying) are recorded by pressure transducers installed at strategic locations along a pipeline. This work validates previous work on identifying the flow mode from pressure signals (Mittal, Mallick, & Wypych, 2014). Two different powders, namely fly ash (median particle diameter 45 μm, particle den- sity 1950 kg/m3. loosely poured bulk density 950 kg/m3) and cement (median particle diameter 15 p,m, particle density 3060 kg/m3, loosely poured bulk density 1070 kg/m3), are conveyed through different pipelines (51 mm I.D. × 70 m length and 63 mm I.D. × 24 m length). The transient nature of pressure fluc- tuations (instead of steady-state behavior) is considered in investigating flow characteristics. Shannon entropy is found to increase along straight pipe sections for both solids and both pipelines. However, Shannon entropy decreases after a bend. A comparison of Shannon entropy among different ranges of superficial air velocity reveals that high Shannon entropy corresponds to very low velocities (i.e. 3-5 m/s) and very high velocities (i.e. 11-14 m/s) while low Shannon entropy corresponds to mid-range velocities (i.e. 6-8 m/s). 展开更多
关键词 Transient pressure fluctuations Fluidized dense phase Shannon entropy Flow pattern Solid loading ratio Superficial air velocity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部