期刊文献+
共找到43篇文章
< 1 2 3 >
每页显示 20 50 100
Detection and Defense Method Against False Data Injection Attacks for Distributed Load Frequency Control System in Microgrid
1
作者 Zhixun Zhang Jianqiang Hu +3 位作者 Jianquan Lu Jie Yu Jinde Cao Ardak Kashkynbayev 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2024年第3期913-924,共12页
In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibi... In the realm of microgrid(MG),the distributed load frequency control(LFC)system has proven to be highly susceptible to the negative effects of false data injection attacks(FDIAs).Considering the significant responsibility of the distributed LFC system for maintaining frequency stability within the MG,this paper proposes a detection and defense method against unobservable FDIAs in the distributed LFC system.Firstly,the method integrates a bi-directional long short-term memory(Bi LSTM)neural network and an improved whale optimization algorithm(IWOA)into the LFC controller to detect and counteract FDIAs.Secondly,to enable the Bi LSTM neural network to proficiently detect multiple types of FDIAs with utmost precision,the model employs a historical MG dataset comprising the frequency and power variances.Finally,the IWOA is utilized to optimize the proportional-integral-derivative(PID)controller parameters to counteract the negative impacts of FDIAs.The proposed detection and defense method is validated by building the distributed LFC system in Simulink. 展开更多
关键词 MICROGRID load frequency control false data injection attack bi-directional long short-term memory(BiLSTM)neural network improved whale optimization algorithm(IWOA) detection and defense
原文传递
Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids
2
作者 Aijia Ding Tingzhang Liu 《Energy Engineering》 EI 2024年第12期3735-3759,共25页
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ... The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes. 展开更多
关键词 Fractional order PID interconnected microgrids load frequency control meta-heuristic algorithm parameter optimization
下载PDF
Detection and Estimation of False Data Injection Attacks for Load Frequency Control Systems 被引量:2
3
作者 Jun Ye Xiang Yu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第4期861-870,共10页
False data injection attacks(FDIAs)against the load frequency control(LFC)system can lead to unstable operation of power systems.In this paper,the problems of detecting and estimating the FDIAs for the LFC system in t... False data injection attacks(FDIAs)against the load frequency control(LFC)system can lead to unstable operation of power systems.In this paper,the problems of detecting and estimating the FDIAs for the LFC system in the presence of external disturbances are investigated.First,the LFC system model with FDIAs against frequency and tie-line power measurements is established.Then,a design procedure for the unknown input observer(UIO)is presented and the residual signal is generated to detect the FDIAs.The UIO is designed to decouple the effect of the unknown external disturbance on the residual signal.After that,an attack estimation method based on a robust adaptive observer(RAO)is proposed to estimate the state and the FDIAs simultaneously.In order to improve the performance of attack estimation,the H¥technique is employed to minimize the effect of external disturbance on estimation errors,and the uniform boundedness of the state and attack estimation errors is proven using Lyapunov stability theory.Finally,a two-area interconnected power system is simulated to demonstrate the effectiveness of the proposed attack detection and estimation algorithms. 展开更多
关键词 External disturbance false data injection attacks load frequency control robust adaptive observer unknown input observer
原文传递
Detection of False Data Injection Attacks on Load Frequency Control System with Renewable Energy Based on Fuzzy Logic and Neural Networks 被引量:2
4
作者 Ziyu Chen Jizhong Zhu +2 位作者 Shenglin Li Yun Liu Tengyan Luo 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第6期1576-1587,共12页
Load frequency control(LFC)system may be destroyed by false data injection attacks(FDIAs)and consequently the security of the power system will be impacted.High-efficiency FDIA detection can reduce the damage and powe... Load frequency control(LFC)system may be destroyed by false data injection attacks(FDIAs)and consequently the security of the power system will be impacted.High-efficiency FDIA detection can reduce the damage and power loss to the power system.This paper defines various typical and hybrid FDIAs,and the influence of several FDIAs with different characteristics on the multi-area LFC system is analyzed.To detect various attacks,we introduce an improved data-driven method,which consists of fuzzy logic and neural networks.Fuzzy logic has the features of high applicability,robustness,and agility,which can make full use of samples.Further,we construct the LFC system on MATLAB/Simulink platform,and systematically simulate the experiments that FDIAs affect the LFC system by tampering with measurement data.Among them,considering the large-scale penetration of renewable energy with intermittency and volatility,we generate three simulation scenarios with or without renewable energy generation.Then,the performance for detecting FDIAs of the improved method is verified by simulation data samples. 展开更多
关键词 load frequency control(LFC) wind turbine and photovoltaic generation fuzzy logic neural network
原文传递
Decentralized Resilient H_∞Load Frequency Control for Cyber-Physical Power Systems Under DoS Attacks 被引量:2
5
作者 Xin Zhao Suli Zou Zhongjing Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第11期1737-1751,共15页
This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitte... This paper designs a decentralized resilient H_(∞)load frequency control(LFC)scheme for multi-area cyber-physical power systems(CPPSs).Under the network-based control framework,the sampled measurements are transmitted through the communication networks,which may be attacked by energylimited denial-of-service(DoS)attacks with a characterization of the maximum count of continuous data losses(resilience index).Each area is controlled in a decentralized mode,and the impacts on one area from other areas via their interconnections are regarded as the additional load disturbance of this area.Then,the closed-loop LFC system of each area under DoS attacks is modeled as an aperiodic sampled-data control system with external disturbances.Under this modeling,a decentralized resilient H_(∞)scheme is presented to design the state-feedback controllers with guaranteed H∞performance and resilience index based on a novel transmission interval-dependent loop functional method.When given the controllers,the proposed scheme can obtain a less conservative H_(∞)performance and resilience index that the LFC system can tolerate.The effectiveness of the proposed LFC scheme is evaluated on a one-area CPPS and two three-area CPPSs under DoS attacks. 展开更多
关键词 Cyber-physical power systems(CPPSs) denial-of-service(DoS)attacks load frequency control(LFC) sampled-data control
下载PDF
Robust Stabilization of Load Frequency Control System Under Networked Environment 被引量:1
6
作者 Ashraf Khalil Ji-Hong Wang Omar Mohamed 《International Journal of Automation and computing》 EI CSCD 2017年第1期93-105,共13页
The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shar... The deregulation of the electricity market made the open communication infrastructure an exigent need for future power system. In this scenario dedicated communication links are replaced by shared networks. These shared networks are characterized by random time delay and data loss. The random time delay and data loss may lead to system instability if they are not considered during the controller design stage. Load frequency control systems used to rely on dedicated communication links. To meet future power system challenges these dedicated networks are replaced by open communication links which makes the system stochastic. In this paper, the stochastic stabilization of load frequency control system under networked environment is investigated. The shared network is represented by three states which are governed by Markov chains. A controller synthesis method based on the stochastic stability criteria is presented in the paper. A one-area load frequency control system is chosen as case study. The effectiveness of the proposed method for the controller synthesis is tested through simulation. The derived proportion integration (PI) controller proves to be optimum where it is a compromise between compensating the random time delay effects and degrading the system dynamic performance. The range of the PI controller gains that guarantee the stochastic stability is determined. Also the range of the PI controller gains that achieve the robust stochastic stability is determined where the decay rate is used to measure the robustness of the system. 展开更多
关键词 load frequency control load frequency control (LFC) Markov chains networked control system robust stabilization.
原文传递
Effects of fractional-order PI controller on delay margin in single-area delayed load frequency control systems 被引量:1
7
作者 Vedat CELIK Mahmut Temel OZDEMIR Kwang Y.LEE 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2019年第2期380-389,共10页
This study aims to determine the improvement effect on the delay margin if fractional-order proportional integral(PI) controller is used in the control of a singlearea delayed load frequency control(LFC) system. The d... This study aims to determine the improvement effect on the delay margin if fractional-order proportional integral(PI) controller is used in the control of a singlearea delayed load frequency control(LFC) system. The delay margin of the system with fractional-order PI control has been obtained for various fractional integral orders and the effect of them has been shown on the delay margin as a third controller parameter. Furthermore,the stability of the system that is either under or over the delay margin is examined by generalized modified Mikhailov criterion.The stability results obtained have been confirmed numerically in time domain. It is demonstrated that the proposed controller for delayed LFC system provides more flexibility on delay margin according to integer-order PI controller. 展开更多
关键词 Delay dependent stability Delay margin Fractional-order proportional integral(PI) Generalized modified Mikhailov criterion load frequency control with delay
原文传递
Coefficient Diagram Method Based Load Frequency Control for a Modern Power System
8
作者 Princess Garasi Yaser Qudaih +2 位作者 Raheel Ali Masayuki Watanabe Yasunori Mitani 《Journal of Electronic Science and Technology》 CAS 2014年第3期270-276,共7页
increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the syste... increasing penetration of renewable energy sources with a wide range of operating conditions causing power system uncertainties, conventional controllers are incapable of providing proper performance to keep the system stable. However, controllable or dispatchable loads such as electric vehicles (EVs) and heat pumps (HPs) can be utilized for supplementary frequency control. This paper shows the ability of plug-in hybrid EVs, HPs, and batteries (BTs) to contribute in the frequency control of an isolated power system. Moreover, we propose a new online intelligent approach by using a coefficient diagram method (CDM) to enhance the system performance and robustness against uncertainties. The performance of the proposed intelligent CDM control has been compared with the proportional-integral (PI) controller and the superiority of the proposed scheme has been verified in Matiab/Simulink programs. 展开更多
关键词 BATTERY coefficient diagram method electric vehicles heat pump load frequency control renewable energy sources.
下载PDF
Ant Lion Optimization Approach for Load Frequency Control of Multi-Area Interconnected Power Systems
9
作者 R. Satheeshkumar R. Shivakumar 《Circuits and Systems》 2016年第9期2357-2383,共27页
This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune ... This work proposes a novel nature-inspired algorithm called Ant Lion Optimizer (ALO). The ALO algorithm mimics the search mechanism of antlions in nature. A time domain based objective function is established to tune the parameters of the PI controller based LFC, which is solved by the proposed ALO algorithm to reach the most convenient solutions. A three-area interconnected power system is investigated as a test system under various loading conditions to confirm the effectiveness of the suggested algorithm. Simulation results are given to show the enhanced performance of the developed ALO algorithm based controllers in comparison with Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Bat Algorithm (BAT) and conventional PI controller. These results represent that the proposed BAT algorithm tuned PI controller offers better performance over other soft computing algorithms in conditions of settling times and several performance indices. 展开更多
关键词 load frequency control (LFC) Multi-Area Power system Proportional-Integral (PI) controller Ant Lion Optimization (ALO) Bat Algorithm (BAT) Genetic Algorithm (GA) Particle Swarm Optimization (PSO)
下载PDF
Load Frequency Control of a Two Area-Power System with Non-reheat Turbines by SMC Approach
10
作者 Jianping Guo 《Journal of Energy and Power Engineering》 2015年第6期566-573,共8页
Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (s... Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique. 展开更多
关键词 Sliding mode control load frequency control NONLINEARITIES robustness.
下载PDF
A Novel Flower Pollination Algorithm to Solve Load Frequency Control for a Hydro-Thermal Deregulated Power System
11
作者 D. Lakshmi A. Peer Fathima Ranganath Muthu 《Circuits and Systems》 2016年第4期166-178,共13页
Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at pr... Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at predetermined values for the corresponding changes in load demand. In this paper, the two-area, hydrothermal deregulated power system is considered with Redox Flow Batteries (RFB) in both the areas. RFB is an energy storage device, which converts electrical energy into chemical energy, that is used to meet the sudden requirement of real power load and hence very effective in reducing the peak shoots. With conventional proportional-integral (PI) controller, it is difficult to get the optimum solution. Hence, intelligent techniques are used to tune the PI controller of the LFC to improve the dynamic response. In the family of intelligent techniques, a recent nature inspired algorithm called the Flower Pollination Algorithm (FPA) gives the global minima solution. The optimal value of the controller is determined by minimizing the ISE. The results show that the proposed FPA tuned PI controller improves the dynamic response of the deregulated system faster than the PI controller for different cases. The simulation is implemented in MATLAB environment. 展开更多
关键词 load frequency control Redox Flow Battery Proportional Integral controller Flower Pollination Algorithm
下载PDF
Neural-Network-Based Terminal Sliding Mode Control for Frequency Stabilization of Renewable Power Systems 被引量:6
12
作者 Dianwei Qian Guoliang Fan 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第3期706-717,共12页
This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turb... This paper addresses a terminal sliding mode control(T-SMC) method for load frequency control(LFC) in renewable power systems with generation rate constraints(GRC).A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks(RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme. 展开更多
关键词 Generation rate constraint(GRC) load frequency control(LFC) radial basis function neural networks(RBF NNs) renewable power system terminal sliding mode control(T-SMC)
下载PDF
Load Frequency Control of Multi-interconnected Renewable Energy Plants Using Multi-Verse Optimizer 被引量:1
13
作者 Hegazy Rezk Mohamed A.Mohamed +1 位作者 Ahmed A.Zaki Diab N.Kanagaraj 《Computer Systems Science & Engineering》 SCIE EI 2021年第5期219-231,共13页
A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presente... A reliable approach based on a multi-verse optimization algorithm(MVO)for designing load frequency control incorporated in multi-interconnected power system comprising wind power and photovoltaic(PV)plants is presented in this paper.It has been applied for optimizing the control parameters of the load frequency controller(LFC)of the multi-source power system(MSPS).The MSPS includes thermal,gas,and hydro power plants for energy generation.Moreover,the MSPS is integrated with renewable energy sources(RES).The MVO algorithm is applied to acquire the ideal parameters of the controller for controlling a single area and a multi-area MSPS integrated with RES.HVDC link is utilized in shunt with AC multi-areas interconnection tie line.The proposed scheme has achieved robust performance against the disturbance in loading conditions,variation of system parameters,and size of step load perturbation(SLP).Meanwhile,the simulation outcomes showed a good dynamic performance of the proposed controller. 展开更多
关键词 load frequency control multi-verse optimization multi-area power system renewable energy sources
下载PDF
Load Frequency Control of Small Hydropower Plants Using One-Input Fuzzy PI Controller with Linear and Non-Linear Plant Model 被引量:2
14
作者 Derek Ajesam Asoh Edwin Nyuysever Mbinkar Albert Nouck Moutlen 《Smart Grid and Renewable Energy》 2022年第1期1-16,共16页
<span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes... <span style="font-family:Verdana;">This study presents an intelligent approach for load frequency control (LFC) of small hydropower plants (SHPs). The approach which is based on fuzzy logic (FL), takes into account the non-linearity of SHPs—something which is not possible using traditional controllers. Most intelligent methods use two-</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">input fuzzy controllers, but because such controllers are expensive, there is </span><span style="font-family:Verdana;">economic interest in the relatively cheaper single-input controllers. A n</span><span style="font-family:Verdana;">on-</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">linear control model based on one-input fuzzy logic PI (FLPI) controller was developed and applied to control the non-linear SHP. Using MATLAB/Si</span><span style="font-family:Verdana;">- </span><span style="font-family:Verdana;">mulink SimScape, the SHP was simulated with linear and non-linear plant models. The performance of the FLPI controller was investigated and compared with that of the conventional PI/PID controller. Results show that the settling time for the FLPI controller is about 8 times shorter;while the overshoot is about 15 times smaller compared to the conventional PI/PID controller. Therefore, the FLPI controller performs better than the conventional PI/PID controller not only in meeting the LFC control objective but also in ensuring increased dynamic stability of SHPs.</span> 展开更多
关键词 Small Hydropower Plant Linear and Non-Linear Model load frequency control Non-Linear control Fuzzy Logic controller Renewable Energy
下载PDF
Bilateral Contract for Load Frequency and Renewable Energy Sources Using Advanced Controller
15
作者 Krishan Arora Gyanendra Prasad Joshi +4 位作者 Mahmoud Ragab Muhyaddin Rawa Ahmad H.Milyani Romany F.Mansour Eunmok Yang 《Computers, Materials & Continua》 SCIE EI 2022年第11期3165-3180,共16页
Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance.However,the collaboration of various manufacturing agencies,aut... Reestablishment in power system brings in significant transformation in the power sector by extinguishing the possession of sound consolidated assistance.However,the collaboration of various manufacturing agencies,autonomous power manufacturers,and buyers have created complex installation processes.The regular active load and inefficiency of best measures among varied associates is a huge hazard.Any sudden load deviation will give rise to immediate amendment in frequency and tie-line power errors.It is essential to deal with every zone’s frequency and tie-line power within permitted confines followed by fluctuations within the load.Therefore,it can be proficient by implementing Load Frequency Control under the Bilateral case,stabilizing the power and frequency distinction within the interrelated power grid.Balancing the net deviation in multiple areas is possible by minimizing the unbalance of Bilateral Contracts with the help of proportional integral and advanced controllers like Harris Hawks Optimizer.We proposed the advanced controller Harris Hawk optimizer-based model and validated it on a test bench.The experiment results show that the delay time is 0.0029 s and the settling time of 20.86 s only.This model can also be leveraged to examine the decision boundaries of the Bilateral case. 展开更多
关键词 Bilateral contract load frequency control OPTIMIZATION harris hawks optimizer
下载PDF
Integral Performance Criteria Based Analysis of Load Frequency Control in Bilateral Based Market
16
作者 P. Anitha P. Subburaj 《Circuits and Systems》 2016年第6期1021-1032,共12页
Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restru... Performance index based analysis is made to examine and highlight the effective application of Particle Swarm Optimization (PSO) to optimize the Proportional Integral gains for Load Frequency Control (LFC) in a restructured power system that operates under Bilateral based policy scheme. Various Integral Performance Criteria measures are taken as fitness function in PSO and are compared using overshoot, settling time and frequency and tie-line power deviation following a step load perturbation (SLP). The motivation for using different fitness technique in PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes are tested on a two-area restructured power system. The results of the proposed PSO based controller show the better performance compared to the classical Ziegler-Nichols (Z-N) tuned PI and Fuzzy Rule based PI controller. 展开更多
关键词 load frequency control Particle Swarm Optimization Bilateral Market Area control Error Fuzzy Rule Based PI controller Parametric Uncertainties
下载PDF
Hybrid Fuzzy Controller Based Frequency Regulation in Restructured Power System
17
作者 P. Anitha P. Subburaj 《Circuits and Systems》 2016年第6期759-770,共12页
This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs ... This paper discusses the implementation of Load Frequency Control (LFC) in restructured power system using Hybrid Fuzzy controller. The formulation of LFC in open energy market is much more challenging;hence it needs an intelligent controller to adapt the changes imposed by the dynamics of restructured bilateral contracts. Fuzzy Logic Control deals well with uncertainty and indistinctness while Particle Swarm Optimization (PSO) is a well-known optimization tool. Abovementioned techniques are combined and called as Hybrid Fuzzy to improve the dynamic performance of the system. Frequency control of restructured system has been achieved by automatic Membership Function (MF) tuned fuzzy logic controller. The parameters defining membership function has been tuned and updated from time to time using Particle Swarm Optimization (PSO). The robustness of the proposed hybrid fuzzy controller has been compared with conventional fuzzy logic controller using performance measures like overshoot and settling time following a step load perturbation. The motivation for using membership function tuning using PSO is to show the behavior of the controller for a wide range of system parameters and load changes. Error based analysis with parametric uncertainties and load changes is tested on a two-area restructured power system. 展开更多
关键词 Fuzzy Logic controller Membership Function Particle Swarm Optimization load frequency control Bilateral Market
下载PDF
Frequency Regulation of Power Systems With a Wind Farm by Sliding-Mode-Based Design 被引量:1
18
作者 Zhiwen Deng Chang Xu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第11期1980-1989,共10页
Load frequency regulation is an essential auxiliary service used in dealing with the challenge of frequency stability in power systems that utilize an increasing proportion of wind power.We investigate a load frequenc... Load frequency regulation is an essential auxiliary service used in dealing with the challenge of frequency stability in power systems that utilize an increasing proportion of wind power.We investigate a load frequency control method for multiarea interconnected power systems integrated with wind farms,aimed to eliminate the frequency deviation in each area and the tie-line power deviation between different areas.The method explores the derivative and integral terminal sliding mode control technology to solve the problem of load frequency regulation.Such technology employs the concept of relative degrees.However,the subsystems of wind-integrated interconnected power systems have different relative degrees,complicating the control design.This study develops the derivative and integral terminal sliding-mode-based controllers for these subsystems,realizing the load frequency regulation.Meanwhile,closed-loop stability is guaranteed with the theory of Lyapunov stability.Moreover,both a thermal power system and a wind power system are applied to provide frequency support in this study.Considering both constant and variable external disturbances,several numerical simulations were carried out in a two-area thermal power system with a wind farm.The results demonstrate the validity and feasibility of the developed method. 展开更多
关键词 load frequency control(LFC) power system sliding mode control(SMC) wind farm
下载PDF
Design of Robust Controller for LFC of Interconnected Power System Considering Communication Delays
19
作者 T. Jesintha Mary P. Rangarajan 《Circuits and Systems》 2016年第6期794-804,共11页
The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performa... The usage of open communication infrastructure for transmitting the control signals in the Load Frequency Control (LFC) scheme of power system introduces time delays. These time delays may degrade the dynamic performance of the power system. This paper proposes a robust method to design a controller for multi-area LFC schemes considering communication delays. In existing literature, the controller values of LFC are designed using time domain approach which is less accurate than the proposed method. In proposed method, the controller values are determined by moving the rightmosteigenvalues of the system to the left half plane in a quasi-continuous way for a preset upper bound of time delay. Then the robustness of the proposed controller is assessed by estimating the maximumtolerable value of time delay for maintaining system stability. Simulation studies are carried out for multi-area LFC scheme equipped with the proposed controller using Matlab/simulink. From the results, it has been concluded that the proposed controller guarantees the tolerance for all time delays smaller than the preset upper bound and provides a bigger delay margin than the existing controllers. 展开更多
关键词 Continuous Pole Placement Technique Delay Margin Delay-Dependent Stability Analysis frequency Sweeping Test load frequency control with Time Delays Output Feedback control
下载PDF
MicroGrid Designer:user-friendly design,operation and control assist tools for resilient microgrid and autonomous community 被引量:2
20
作者 Ryuichi Yokoyama Yicheng Zhou 《Global Energy Interconnection》 EI CAS CSCD 2022年第3期249-258,共10页
During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,... During this decade,many countries have experienced natural and accidental disasters,such as typhoons,floods,earthquakes,and nuclear plant accidents,causing catastrophic damage to infrastructures.Since the end of 2019,all countries of the world are struggling with the COVID-19 and pursuing countermeasures,including inoculation of vaccine,and changes in our lifestyle and social structures.All these experiences have made the residents in the affected regions keenly aware of the need for new infrastructures that are resilient and autonomous,so that vital lifelines are secured during calamities.A paradigm shift has been taking place toward reorganizing the energy social service management in many countries,including Japan,by effective use of sustainable energy and new supply schemes.However,such new power sources and supply schemes would affect the power grid through intermittency of power output and the deterioration of power quality and service.Therefore,new social infrastructures and novel management systems to supply energy and social service will be required.In this paper,user-friendly design,operation and control assist tools for resilient microgrids and autonomous communities are proposed and applied to the standard microgrid to verify its effectiveness and performance. 展开更多
关键词 MICROGRID Autonomous community Grid design and analysis RESILIENCE Unit commitment Economic load dispatch load frequency control Dynamic power flow Energy management system
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部