The next-generation Euro 7 standard proposed much lower pollutant limits from gasoline vehicles,specifically for CO and NO_(x),which would be challenging for the three-way catalysts(TWCs)utilized commercially to elimi...The next-generation Euro 7 standard proposed much lower pollutant limits from gasoline vehicles,specifically for CO and NO_(x),which would be challenging for the three-way catalysts(TWCs)utilized commercially to eliminate these pollutants.TWCs with reductive(Rh)and oxidative(Pd)active components on gasoline particulate filters(TWC on GPF)play importantly auxiliary roles in the remediation of CO and NO_(x)downstream the close coupled TWCs to meet their emission targets.Here,a low-content Rh-based TWC(0.17 wt%)zoned with a less expensive Pd-based TWC(0.29 wt%)for GPF applications(cGPF)is reported using improved colloidal deposition method.The supporting of Rh on Y-stabilized ZrO_(2)rather than on CeO_(2)-ZrO_(2)inhibits the formation of inactive Ce rhodate species,while Pd on CeO_(2)-ZrO_(2)not only guarantees the high oxygen storage capacity(OSC)but also enhances catalytic activity.The layout of the front one-fifth in volume being 0.29 wt%Pd on Ce_(0.43)Zr_(0.5)7O_(2)and the rear four-fifths being 0.17 wt%Rh on Zr_(0.85)Y_(0.15)O_(2)prevents the possible alloying of Rh with Pd.The highly effective zoned Rh and Pd TWCs show synergistic three-way activity before and after severe hydrothermal aging at 1000℃with 10%water for24 h,which could be potential choices for close coupled GPF application to satisfy the upcoming stringent emission standards,such as Euro 7 and China 6b.展开更多
基金Project supported by the National Natural Science Foundation of China(22076062,22276070)China Postdoctoral Science Foundation(2022M711957)+1 种基金National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2019A14)Project of Jinan Municipal Bureau of Science and Technology(2020GXRC021).
文摘The next-generation Euro 7 standard proposed much lower pollutant limits from gasoline vehicles,specifically for CO and NO_(x),which would be challenging for the three-way catalysts(TWCs)utilized commercially to eliminate these pollutants.TWCs with reductive(Rh)and oxidative(Pd)active components on gasoline particulate filters(TWC on GPF)play importantly auxiliary roles in the remediation of CO and NO_(x)downstream the close coupled TWCs to meet their emission targets.Here,a low-content Rh-based TWC(0.17 wt%)zoned with a less expensive Pd-based TWC(0.29 wt%)for GPF applications(cGPF)is reported using improved colloidal deposition method.The supporting of Rh on Y-stabilized ZrO_(2)rather than on CeO_(2)-ZrO_(2)inhibits the formation of inactive Ce rhodate species,while Pd on CeO_(2)-ZrO_(2)not only guarantees the high oxygen storage capacity(OSC)but also enhances catalytic activity.The layout of the front one-fifth in volume being 0.29 wt%Pd on Ce_(0.43)Zr_(0.5)7O_(2)and the rear four-fifths being 0.17 wt%Rh on Zr_(0.85)Y_(0.15)O_(2)prevents the possible alloying of Rh with Pd.The highly effective zoned Rh and Pd TWCs show synergistic three-way activity before and after severe hydrothermal aging at 1000℃with 10%water for24 h,which could be potential choices for close coupled GPF application to satisfy the upcoming stringent emission standards,such as Euro 7 and China 6b.