期刊文献+
共找到1,449篇文章
< 1 2 73 >
每页显示 20 50 100
A Multi-mode Electronic Load Sensing Control Scheme with Power Limitation and Pressure Cut-off for Mobile Machinery
1
作者 Min Cheng Bolin Sun +1 位作者 Ruqi Ding Bing Xu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第1期157-170,共14页
In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are ... In mobile machinery,hydro-mechanical pumps are increasingly replaced by electronically controlled pumps to improve the automation level,but diversified control functions(e.g.,power limitation and pressure cut-off)are integrated into the electronic controller only from the pump level,leading to the potential instability of the overall system.To solve this problem,a multi-mode electrohydraulic load sensing(MELS)control scheme is proposed especially considering the switching stability from the system level,which includes four working modes of flow control,load sensing,power limitation,and pressure control.Depending on the actual working requirements,the switching rules for the different modes and the switching direction(i.e.,the modes can be switched bilaterally or unilaterally)are defined.The priority of different modes is also defined,from high to low:pressure control,power limitation,load sensing,and flow control.When multiple switching rules are satisfied at the same time,the system switches to the control mode with the highest priority.In addition,the switching stability between flow control and pressure control modes is analyzed,and the controller parameters that guarantee the switching stability are obtained.A comparative study is carried out based on a test rig with a 2-ton hydraulic excavator.The results show that the MELS controller can achieve the control functions of proper flow supplement,power limitation,and pressure cut-off,which has good stability performance when switching between different control modes.This research proposes the MELS control method that realizes the stability of multi-mode switching of the hydraulic system of mobile machinery under different working conditions. 展开更多
关键词 Hydraulic control load sensing MULTI-MODE Power limitation Mobile machinery
下载PDF
RESEARCH ON THE PERFORMANCE OF NEW TYPE OF PROPORTIONAL PESSURE AND FLOW CONTROL VALVE 被引量:9
2
作者 Quan LongMa JianWang YongjinInstitute of Mechatronics,Taiyuan University of Technology,Taiyuan 030024, China 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第3期281-284,共4页
A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control... A new closed loop flow controlling principle through correcting the valve'sopening area while load pressure is changing is carried out. Further more a principle using only oneproportional valve to compound control pressure and flow is suggested. By using very simpleproportional throttle valve in structure, the functions that five kinds of proportional valves orany two of them combined possess can be complimented. After analyzing, comparing, and testing thedynamic and static characteristics of valve with different controlling principles and main valvestructure styles, the optimized structure styles and control methods are achieved. 展开更多
关键词 Electro-hydraulic proportional control Proportional flow valve Proportionalpressure valve pressure and flow compound control
下载PDF
Numerical Investigation of Electrohydrodynamic (EHD) Flow Control in an S-Shaped Duct 被引量:7
3
作者 杨晖 李锋 +1 位作者 宋耀颖 孙佰刚 《Plasma Science and Technology》 SCIE EI CAS CSCD 2012年第10期897-904,共8页
An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular c... An electrohydrodynamic (EHD) method, which is based on glow discharge plasma, is presented for flow control in an S-shaped duct. The research subject is an expanding channel with a constant width and a rectangular cross section. An equivalent divergence angle and basic function are introduced to build the three-dimensional model. Subsequently, the plasma physical models are simplified as the effects of electrical body force and work (done by the force) on the fluid near the wall. With the aid of FLUENT software, the source terms of momentum and energy are added to the Navier-Stokes equation. Finally, the original performance of three models (A, B and C) is studied, in which model A demonstrates better performance. Then EHD control based on model A is discussed. The results show that the EHD method is an effective way of reducing flow loss and improving uniformity at the duct exit. The innovation in this study is the assessment of the EHD control effect on the flow in an S-shaped duct. Both the parametric modeling of the S-shaped duct and the simplified models of plasma provide valuable information for future research on aircraft inlet ducts. 展开更多
关键词 electro hydrodynamic (EHD) S-shaped duct flow control glow discharge plasma total pressure.
下载PDF
Numerical Analysis of a Microjet-Based Method for Active Flow Control in Convergent-Divergent Nozzles with a Sudden Expansion 被引量:1
4
作者 Abdul Aabid Sher Afghan Khan Muneer Baig 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1877-1900,共24页
A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerical... A method based on microjets is implemented to control the flow properties in a convergent-divergent nozzle undergoing a sudden expansion.Three different variants of this active control technique are explored numerically by means of a finite-volume method for compressible fluid flow:with the first one,the control is implemented at the base,with the second at the wall,while the third one may be regarded as a combination of these.When jets are over-expanded,the control is not very effective.However,when a favourable pressure gradient is established in the nozzle,the control becomes effective,leading to an increase in the base pressure. 展开更多
关键词 Base pressure supersonic flow CFD mach number microjet control
下载PDF
Online differential pressure reset method with adaptive adjustment algorithm for variable chilled water flow control in central air-conditioning systems
5
作者 Tianyi Zhao Ying Zhou +1 位作者 Jili Zhang Xiuming Li 《Building Simulation》 SCIE EI CSCD 2021年第5期1407-1422,共16页
Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a mor... Central air-conditioning systems predominantly operate under partial load conditions.The optimization of a differential pressure setpoint in the chilled water system of a central air-conditioning system leads to a more energy-efficient operation.Determining the differential pressure adjustment value based on the terminal user's real-time demand is one of the critical issues to be addressed during the optimal control process.Furthermore,the online application of the differential pressure setpoint optimization method needs to be considered,along with the stability of the system.This paper proposes a variable differential pressure reset method with an adaptive adjustment algorithm based on the Mamdani fuzzy model.The proposed method was compared with differential pressure reset methods with reference to the chilled water differential temperature,outdoor temperature,and linear model based on the adjustment algorithm.The energy-saving potential,temperature control effect,and avoidance of the most unfavorable thermodynamic loop effects of the four methods were investigated experimentally.The results indicated that,while satisfying the terminal user's energy supply demand and ensuring the avoidance of the most unfavorable thermodynamic loop,the proposed adaptive adjustment algorithm also decreased the differential pressure setpoint value by 25.1%—59.1%and achieved energy savings of 10.6%-45.0%.By monitoring the valve position and supply air temperature of each terminal user,the proposed method exhibited suitable online adaptability and could be flexibly applied to buildings with random load changes. 展开更多
关键词 central air-conditioning system variable water flow control most unfavorable thermodynamic loop differential pressure reset adaptive control
原文传递
Impact of blood pressure control on coronary flow reserve in hypertensive patients
6
作者 杜兰芳 《China Medical Abstracts(Internal Medicine)》 2016年第3期156-157,共2页
Objective To investigate the impacts of blood pressure control on coronary flow reserve(CFR)in hypertensive patients.Methods A total of 236 patients without significant coronary stenosis(defined as<50%luminal narro... Objective To investigate the impacts of blood pressure control on coronary flow reserve(CFR)in hypertensive patients.Methods A total of 236 patients without significant coronary stenosis(defined as<50%luminal narrowing confirmed by coronary angiography or coronary artery CT scan)between January 2011 and July 2015were retrospectively enrolled in this study.CFR 展开更多
关键词 SBP Impact of blood pressure control on coronary flow reserve in hypertensive patients HG CFR flow
原文传递
Experimental Study on Surface Dielectric Barrier Discharge Plasma Actuator with Different Encapsulated Electrode Widths for Airflow Control at Atmospheric Pressure 被引量:3
7
作者 齐晓华 杨亮 +3 位作者 闫慧杰 金英 滑跃 任春生 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第10期1005-1011,共7页
The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study t... The surface dielectric barrier discharge (SDBD) plasma actuator has shown great promise as an aerodynamic flow control device. In this paper, the encapsulated electrode width of a SDBD actuator is changed to study the airflow acceleration behavior. The effects of encapsulated electrode width on the actuator performance are experimentally investigated by measuring the dielectric layer surface potential, time-averaged ionic wind velocity and thrust force. Experimental results show that the airflow velocity and thrust force increase with the encapsulated electrode width. The results can be attributed to the distinct plasma distribution at different encapsulated electrode widths. 展开更多
关键词 atmospheric pressure discharge plasma surface dielectric barrier discharge(SDBD) flow control encapsulated electrode width Schlieren visualization
下载PDF
Effects of retrospective quality control on pressure-flow data with computer-based urodynamic systems from men with benign prostatic hyperplasia 被引量:2
8
作者 Li-Min Liao Werner Schaefer 《Asian Journal of Andrology》 SCIE CAS CSCD 2007年第6期771-780,共10页
Aim: To evaluate the effects of retrospective quality control on pressure-flow data with computer-based urodynamic systems from men with benign prostatic hyperplasia (BPH). Methods: A total of 582 traces of pressu... Aim: To evaluate the effects of retrospective quality control on pressure-flow data with computer-based urodynamic systems from men with benign prostatic hyperplasia (BPH). Methods: A total of 582 traces of pressure-flow study from 181 men with BPH was included in the study. For each trace, maximum urinary flow rate (Qmax) and detrusor pressure at Qmax (pdet.Qmax) were, respectively, read from manually smoothed and corrected uroflow and detrusor pressure curves from the computer print-outs. Obstruction coefficient, International Continence Society (ICS) and Schaefer nomograms were used to detect urethral resistance and to diagnose obstruction. The results obtained by manual reading were compared with those from computer-based systems. Results: After manual correction, Qmax underwent a consistently significant decrease by 1.2 mL/s on average (P 〈 0.001), and had a change range of 0.5-10.4 mL/s. However, pdet.Qmax underwent inconsistently intra-individual changes after correction. The obstruction coefficient increased significantly, by an average of 0.07 (P 〈 0.05). Using the ICS nomogram, the percentage of obstruction increased from 69.8% to 73.9%, and of the non-obstruction decreased from 8.8% to 5.3% (P 〈 0.05). There were 11% of traces that changed the classifications using the ICS nomogram, and 28.9% that changed the grades for the Schaefer nomogram. Conclusion: Systematically significant differences in parameters from pres- sure-flow study between manual readings and computer recordings were demonstrated. Manual correction resulted in a consistently lower Q a higher urethral resistance, and an aggravating obstruction. Manual readings can correct considerable false diagnoses for obstruction. Retrospective quality control of pressure-flow data with com- puter-based systems is necessary. 展开更多
关键词 benign prostatic hyperplasia pressure-flow study quality control
下载PDF
A Novel Flower Pollination Algorithm to Solve Load Frequency Control for a Hydro-Thermal Deregulated Power System
9
作者 D. Lakshmi A. Peer Fathima Ranganath Muthu 《Circuits and Systems》 2016年第4期166-178,共13页
Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at pr... Load frequency control plays a vital role in power system operation and control. LFC regulates the frequency of larger interconnected power systems and keeps the net interchange of power between the pool members at predetermined values for the corresponding changes in load demand. In this paper, the two-area, hydrothermal deregulated power system is considered with Redox Flow Batteries (RFB) in both the areas. RFB is an energy storage device, which converts electrical energy into chemical energy, that is used to meet the sudden requirement of real power load and hence very effective in reducing the peak shoots. With conventional proportional-integral (PI) controller, it is difficult to get the optimum solution. Hence, intelligent techniques are used to tune the PI controller of the LFC to improve the dynamic response. In the family of intelligent techniques, a recent nature inspired algorithm called the Flower Pollination Algorithm (FPA) gives the global minima solution. The optimal value of the controller is determined by minimizing the ISE. The results show that the proposed FPA tuned PI controller improves the dynamic response of the deregulated system faster than the PI controller for different cases. The simulation is implemented in MATLAB environment. 展开更多
关键词 load Frequency control Redox flow Battery Proportional Integral controller flower Pollination Algorithm
下载PDF
Microjet flow control in an ultra-compact serpentine inlet 被引量:7
10
作者 Da Xingya Fan Zhaolin +3 位作者 Fan Jianchao Zeng Liquan Rui Wei Zhou Run 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第5期1381-1390,共10页
Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are c... Microjets are used to control the internal flow to improve the performance of an ultra-compact serpentine inlet. A highly offset serpentine inlet with length-to-diameter ratio of 2.5 is designed and static tests are conducted to analyze the internal flow characteristics in terms of pressure recovery, distortion and flow separation. Flow separation is encountered in the second S-turn, and two strong counter-rotating vortices are formed at the aerodynamic interthce plane (AIP) face which occupy a quarter of the outlet area and result in severe pressure loss and distortion. A flow control model employing a row of microjets in the second turn is designed based on the internal flow characteristics and simplified CFD simulations. Flow control tests are conducted to verify the control effectiveness and understand the characteristics as a function of inlet throat Mach number, injection mass flow ratio, jet Mach number and momentum coefficient. At all test Mach numbers, microjet flow control (MFC) effectively improves the recovery and reduces the distortion intensity. Between inlet throat Mach number 0.2 and 0.5, the strong flow separation in the second S-turn is suppressed at an optimum jet flow ratio of less than 0.65%, resulting in a maximum improvement of 4% for pressure recovery coefficient and a maximum decrease of 75% for circumferential distortion intensity at cruise. However, in order to suppress the flow separation, the injection rate should retain in an effective range. When the injection rate is higher than this range, the flow is degraded and the distortion contour is changed from 90° circumferential distortion pattern to 180° circumferential distortion pattern. Detailed data analysis shows that this optimum flow ratio depends on inlet throat Mach number and the monlcntunl coefficient affects the control effectiveness in a dual stepping manner. 展开更多
关键词 Active flow control Distortion intensity:Micro jet pressure recovery Serpentine inlet
原文传递
Improving the Performance of an Electro-Hydraulic Load-Sensing Proportional Control Valve
11
作者 Raffaele Babbone Massimo Milani Luca Montorsi Fabrizio Paltrinieri 《Journal of Energy and Power Engineering》 2013年第12期2336-2346,共11页
关键词 比例控制阀 负载传感 计算机辅助工程 计算流体动力学 性能 电液 数值模拟 实验活动
下载PDF
Multi-objective optimization for voltage and frequency control of smart grids based on controllable loads 被引量:2
12
作者 Yaxin Wang Donglian Qi Jianliang Zhang 《Global Energy Interconnection》 CAS CSCD 2021年第2期136-144,共9页
The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capabi... The output uncertainty of high-proportion distributed power generation severely affects the system voltage and frequency.Simultaneously,controllable loads have also annually increased,which markedly improve the capability for nodal-power control.To maintain the system frequency and voltage magnitude around rated values,a new multi-objective optimization model for both voltage and frequency control is proposed.Moreover,a great similarity between the multiobjective optimization and game problems appears.To reduce the strong subjectivity of the traditional methods,the idea and method of the game theory are introduced into the solution.According to the present situational data and analysis of the voltage and frequency sensitivities to nodal-power variations,the design variables involved in the voltage and frequency control are classified into two strategy spaces for players using hierarchical clustering.Finally,the effectiveness and rationality of the proposed control are verified in MATLAB. 展开更多
关键词 Multi-objective optimization Voltage control Frequency control Power flow controllable loads Game theory
下载PDF
Numerical investigation on synthetic jet flow control inside an S-inlet duct 被引量:6
13
作者 CHEN ZhanJun WANG JinJun 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第9期2578-2584,共7页
The high degree of centerline curvature and cross-stream pressure gradient in S-inlet ducts gives rise to boundary layer separation and secondary flows,which result in poor pressure recovery and non-uniform flow in th... The high degree of centerline curvature and cross-stream pressure gradient in S-inlet ducts gives rise to boundary layer separation and secondary flows,which result in poor pressure recovery and non-uniform flow in the outlet interface with the engine.The flowfield in ducts is three-dimensional due to the existence of secondary flow,so ordinary two-dimensional actuations have poor effect on reforming the flow.Synthetic jet actuations extended in different spanwise positions were employed to manipulate the flow,and compared with the two-dimensional actuation.The interaction mechanics between flow separation and secondary flow was studied at first.It was found that the secondary flow enhanced or weakened flow separation depending on the spanwise position of synthetic jet actuators.Moreover,the flow separation enhanced the secondary flow,thus causing lower pressure recovery and flow distortion in the duct outlet.The actuators located at different spanwise positions will weaken the secondary flows by improving the flow separation to get energetic and uniform main flow. 展开更多
关键词 合成射流 数值研究 流控制 进气道 二次流动 流动分离 压力恢复 边界层分离
原文传递
H-M Bearing Capacity of A Modified Suction Caisson Determined by Using Load-/Displacement-Controlled Methods 被引量:11
14
作者 张雨坤 高玉峰 +1 位作者 李大勇 Ali H.Mahfouz 《China Ocean Engineering》 SCIE EI CSCD 2016年第6期926-941,共16页
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl... This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values. 展开更多
关键词 MSC (modified suction caisson) saturated marine fine sand model tests load- and displacement-controlled loading laterally combined bearing capacity earth pressure
下载PDF
Modeling and Control of Time-pressure Dispensing for Semiconductor Manufacturing 被引量:5
15
作者 Cong-Ping Chen Han-Xiong Li Han Ding 《International Journal of Automation and computing》 EI 2007年第4期422-427,共6页
To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amo... To improve the consistency of the adhesive amount dispensed by the time-pressure dispenser for semiconductor manufacturing, a non-Newtonian fluid flow rate model is developed to represent and estimate the adhesive amount dispensed in each cycle. Taking account of gas compressibility, an intelligent model-based control strategy is proposed to compensate the deviation of adhesive amount dispensed from the desired one. Both simulations and experiments show that the dispensing consistency is greatly improved by using the model-based control strategy developed in this paper. 展开更多
关键词 Time-pressure dispensing CONSISTENCY fluid flow rate model model-based control.
下载PDF
A New Device for Gas-Liquid Flow Measurements Relying on Forced Annular Flow
16
作者 Tiantian Yu Youping Lv +5 位作者 Hao Zhong Ming Liu Pingyuan Gai Zeju Jiang Peng Zhang Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1759-1772,共14页
A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw... A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow. 展开更多
关键词 Gas-liquid flow measurement blocking flowmeter measurement model pressure fluctuations numerical simulation experimental control
下载PDF
Pressure control of PEMFC distributed power generator
17
作者 张颖颖 曹广益 朱新坚 《Journal of Shanghai University(English Edition)》 CAS 2006年第3期262-267,共6页
Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynami... Control design is important for PEMFC (proton exchange membrane fuel cell) distributed power generator to satisfy user requirement for safe and stable operation. For a complex multi-variable dynamic system, a dynamic simulation model is first established. In view of close coupling and non-linear relationships between variables, the intelligent auto-adapted PI decoupling control method is used. From the simulation results it is found that, by bringing quadratic performance index in the single neuron, constructing adaptive PI controller, and adjusting gas flow rates through the second pressure relief valve and air compressor coordinately, both anode and cathode pressures can be maintained at ideal levels. 展开更多
关键词 proton exchange membrane fuel cell (PEMFC) distributed power generator pressure control flow rate PI decoupling control quadratic performance index single neuron adaptive PI controller.
下载PDF
Active flow control of S-duct by plasma synthetic jet
18
作者 Ru-bing LIU Xiao-yin MEI +3 位作者 Sheng-hui XUE Yu-wen LU Zhe-zhe SU Qi LIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第8期652-668,共17页
Flow separation and secondary flow in the S-duct of an aircraft engine cause severe pressure loss and airflow distortion at the outlet,lowering engine performance.Herein,a serial two-electrode plasma synthetic jet(PSJ... Flow separation and secondary flow in the S-duct of an aircraft engine cause severe pressure loss and airflow distortion at the outlet,lowering engine performance.Herein,a serial two-electrode plasma synthetic jet(PSJ)actuator array is used to actively control the flow field in the duct and improve its characteristics.The results show that the PSJ significantly increases the wall pressure recovery coefficient,suppresses flow separation,and improves the outlet pressure distortion.The primary and secondary orders of the influencing factors are as follows:control position>jet momentum coefficient>excitation frequency>jet configuration.The best jet control position is near the separation location,and the best jet configuration is the‘Λ’configuration.The higher the jet momentum coefficient and excitation frequency,the better the flow control.The wall pressure coefficient increases by up to 127.8%,and the outlet steady pressure distortion index decreases by 9.15%.The control mechanism is the direct energy injection into the flow boundary layer through a high-speed jet and the indirect control effect of the induced streamwise vortex.On the one hand,the PSJ suppresses flow separation by improving the ability of the boundary layer to resist the inverse pressure gradient.On the other hand,it reduces pressure distortion by decreasing the intensity of the secondary flow and weakening the backflow.This study thus provides a new technology for the active control of the flow-field characteristics in an S-duct and has significance for guiding the application of synthetic jet technology in S-ducts. 展开更多
关键词 S-duct flow control Plasma synthetic jet(PSJ) flow separation pressure distortion
原文传递
Water-Assisted Injection Molding System Based on Water Hydraulic Proportional Control Technique 被引量:5
19
作者 ZHOU Hua ZHANG Zengmeng +1 位作者 GAO Yuan'an YANG Huayong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第4期418-427,共10页
Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savin... Water-assisted injection molding(WAIM), an innovative process to mold plastic parts with hollow sections, is characterized with intermittent, periodic process and large pressure and flow rate variation. Energy savings and injection pressure control can not be .attained based on conventional valve control system. Moreover, the injection water can not be supplied directly by water hydraulic proportional control system. Poor efficiency and control performance are presented by current trial systems, which pressurize injection water by compressed air. In this paper, a novel water hydraulic system is developed applying an accumulator for energy saving. And a new differential pressure control method is proposed by using pressure cylinder and water hydraulic proportional pressure relief valve for back pressure control. Aiming at design of linear controller for injection water pressure regulation, a linear load model is approximately built through computational fluid dynamics(CFD) simulation on two-phase flow cavity filling process with variable temperature and viscosity, and a linear model of pressure control system is built with the load model and linearization of water hydraulic components. According to the simulation, model based feedback is brought forward to compensate the pressure decrease during accumulator discharge and eliminate the derivative element of the system. Meanwhile, the steady-state error can be reduced and the capacity of resisting disturbance can be enhanced, by closed-loop control of load pressure with integral compensation. Through the developed experimental system in the State Key Lab of Fluid Power Transmission and Control, Zhejiang University, China, the static characteristic of the water hydraulic proportional relief valve was tested and output pressure control of the system in Acrylonitrile Butadiene Styrene(ABS) parts molding experiments was also studied. The experiment results show that the dead band and hysteresis of the water hydraulic proportional pressure relief valve are large, but the control precision and linearity can be improved with feed-forward compensation. With the experimental results of injection water pressure control, the applicability of this WAIM system and the effect of its linear controller are verified. The novel proposed process of WAIM pressure control and study on characteristics of control system contribute to the application of water hydraulic proportional control and WAIM technology. 展开更多
关键词 water-assisted injection molding water hydraulics proportional pressure control linear control load characteristic
下载PDF
Water hammer prediction and control:the Green's function method 被引量:4
20
作者 Li-Jun Xuan Feng Mao Jie-Zhi Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期266-273,共8页
By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates... By Green's function method we show that the water hammer (WH) can be analytically predicted for both laminar and turbulent flows (for the latter, with an eddy vis- cosity depending solely on the space coordinates), and thus its hazardous effect can be rationally controlled and mini- mized. To this end, we generalize a laminar water hammer equation of Wang et al. (J. Hydrodynamics, B2, 51, 1995) to include arbitrary initial condition and variable viscosity, and obtain its solution by Green's function method. The pre- dicted characteristic WH behaviors by the solutions are in excellent agreement with both direct numerical simulation of the original governing equations and, by adjusting the eddy viscosity coefficient, experimentally measured turbulent flow data. Optimal WH control principle is thereby constructed and demonstrated. 展开更多
关键词 Water hammer Two-dimensional analytical theory - pressure transients Pipe-valve flow control
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部