Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host fra...Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.展开更多
In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on ...In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.展开更多
Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded co...Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded connection is difficult to measure. So it is necessary to study the reliable numerical method. At present neither the convergence analysis of the computational results nor the elastic-plastic analysis in the loading-unloading process are studied. In this paper, von Mises plasticity and kinematic hardening model is used to describe the material response. A new convergence criterion for nonlinear finite element analysis of the loading-unloading process is proposed. An axisymmetric finite element model according to the proposed convergence criterion is developed and used to analyze the distributions of axial-load and stress. It can be conclude that the stress distribution analysis is more dependent on the mesh density than the axial-load distribution analysis. The stress distribution result indicates that with increasing of applied load, the engaged threads close to the nut-bearing surface become plastic firstly. The axial-load distribution result reveals that the load percentage carried by single thread depends on the position of thread and load intensity. When the load is relatively small, the applied load is mainly carried by the engaged threads near the nut-bearing surface, when the load is larger, the differences of percentages for all threads become small. The proposed convergence analyzing procedure is applicable for other nonlinear analyses. The obtained distributions of axial-load and stress can be a reference of engineering application.展开更多
The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of...The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of closing crack, and the corresponding critical stress was solved. The result corrects the traditional viewpoint, in which there exist only open or close states for an elliptical crack, and points out that the local closing is also one of crack states. Based on them, the effect of the closed crack on stress intensity factor was discussed in detail, and its rational formulae are put forward.展开更多
Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engin...Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.展开更多
In an extensional shear zone in the Talea Ori, Crete, quartz veins occur in high-pressure low-temperature metamorphic sediments at sites of dilation along shear band boundaries, kink band boundaries and boudin necks. ...In an extensional shear zone in the Talea Ori, Crete, quartz veins occur in high-pressure low-temperature metamorphic sediments at sites of dilation along shear band boundaries, kink band boundaries and boudin necks. Bent elongate grains grown epitactically from the host rock with abundant fluid inclusion trails parallel to the vein wall indicate vein formation by crack-seal increments during dissolutionprecipitation creep of the host rock. The presence of sutured high-angle grain boundaries and subgrains shows that temperatures were sufficiently high for recovery and strain-induced grain boundary migration, i.e. higher than 300 -350℃, close to peak metamorphic conditions. The generally low amount of strain accumulated by dislocation creep in quartz of the host rock and most veins indicates low bulk stress conditions of a few tens of MPa on a long term. The time scale of stress-loading to cause cyclic cracking and sealing is assumed to be lower than the Maxwell relaxation time of the metasediments undergoing dissolution-precipitation creep at high strain rates(10^(-10) s^(-1) to 10^(-9) s^(-1)), which is on the order of hundred years. In contrast, some veins discordant or concordant to the foliation show heterogeneous quartz microstructures with micro-shear zones, sub-basal deformation lamellae, shortwavelength undulatory extinction and recrystallized grains restricted to high strain zones. These microstructures indicate dislocation glide-controlled crystal-plastic deformation(low-temperature plasticity) at transient high stresses of a few hundred MPa with subsequent recovery and strain-induced grain boundary migration at relaxing stresses and temperatures of at least 300 -350℃. High differential stresses in rocks at greenschist-facies conditions that relieve stress by creep on the long term, requires fast stress-loading rates, presumably by seismic activity in the overlying upper crust. The time scale for stress loading is controlled by the duration of the slip event along a fault, i.e. a few seconds to minutes.This study demonstrates that microstructures can distinguish between deformation at internal low stress-loading rates(to tens of MPa on a time scale of hundred years) and high(coseismic) stress-loading rates to a few hundred MPa on a time scale of minutes.展开更多
An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopki...An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication.展开更多
According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would oc...According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.展开更多
A simplified method of designing fully stressed piles and beams with optimum length in a Winkler's medium,end-loaded by an orthogonal force and without any point constraint,is proposed. A numerical algorithm distr...A simplified method of designing fully stressed piles and beams with optimum length in a Winkler's medium,end-loaded by an orthogonal force and without any point constraint,is proposed. A numerical algorithm distributing the mass by means of the Fully Stressed Design ( FSD) method and updating the moment by finite elements has been first implemented. The use of the FSD method is in general quite simple,and allows to obtain optimum,or close to the optimum,solutions. After having distributed the mass through the FSD method,the length has been finally optimised by means of a heuristic procedure.展开更多
Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion...Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms.展开更多
The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradie...The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradient environment is studied. The thermal conductivity of material is considered to be dependent on the temperature. In this paper, the thermal stresses response of the material is calculated rising a nonlinear finite element method. Emphasis is placed on the influence of temperature-dependent properties on the thermal stresses response characteristics, the thermal stresses relaxation property and the thermal stresses history under the different graded compositional distributions and different heat flux magnitudes. Through tile analysis. it is suggested that the influence of temperature-dependent properties can not be neglected In the thermal stresses response analysis and the optimum design process of the material must be based on the temperature-dependent thermo-elastic-plastic theory.展开更多
The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads ...The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.展开更多
The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostati...The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostatic loading. For the analysis of buckling behavior of FML cylinders, various fiber orientations such as 0/90°, 60/30°, ±45° and ±55° and different FRP thickness of 1, 2, and 3 mm were considered. The aluminum cylinder of inner diameter 80 mm, length 800 mm and wall thickness 1 mm was modeled with SHELL281 element type and a total of 1033 elements were used for computing the induced residual stresses between the layers. The results show that magnitude of residual stresses between the layers decreased along the thickness from outer layer towards the inner layer in sine wave form. The maximum residual Von-Mises stress was at inner aluminum layer while the maximum residual radial stress was at the outermost layer of FML cylinder due to the inward pressure. Among all types of FML cylinder 0/90° fiber oriented FML cylinder exhibited the least radial stress and a maximum Von-Mises stress along the FRP thickness.展开更多
Transient stresses around two collinear cracks which lie in parallel with theinterface of the two dissimilar half-planes are studied in this article.The surfaces ofthe cracks are sheared suddenly. Application of the...Transient stresses around two collinear cracks which lie in parallel with theinterface of the two dissimilar half-planes are studied in this article.The surfaces ofthe cracks are sheared suddenly. Application of the Fourier and Laplace transforms technique reduces the problem to that of solving dual integrai equations.To solvethese,the differences of.the crack surface displacements are expanded in a series offunctions which are automatically zero outside of the cracks. The unknown coefficients accompanied in the series are determined by the Schmidt method. The stress intensity .factors are defined in the Laplace transform domain and these are inverted numerically in the physical space .As an example ,the dynamic stress intensity factors around two cracks in a ceramic and steel bonded composite are numerically calculated.展开更多
The load distribution and calculating formulae of the contact stresses in the rotor worm and stator helical surface for toroidal drive are given. The effecting factors on contact stresses and their effects are analyze...The load distribution and calculating formulae of the contact stresses in the rotor worm and stator helical surface for toroidal drive are given. The effecting factors on contact stresses and their effects are analyzed. The results is useful for reference purposes in manufacture and design of the drive.展开更多
A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and d...A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.展开更多
This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the applica...This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.展开更多
The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results i...The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.展开更多
基金National Natural Science Foundation of ChinaGrant/Award Number:41972316+3 种基金Sichuan Science&Technology FoundationGrant/Award Number:2022YFSY0007Joint Funds of the National Natural Science Foundation of ChinaGrant/Award Number:U2344226。
文摘Testing of large-sized specimens is becoming increasingly important in deep underground rock mechanics and engineering.In traditional mechanical loading,stresses on large-sized specimens are achieved by large host frames and hydraulic pumps,which could lead to great investment.Low-cost testing machines clearly always have great appeal.In this study,a new approach is proposed using thermal expansion stress to load rock specimens,which may be particularly suitable for tests of deep hot dry rock with high temperatures.This is a different technical route from traditional mechanical loading through hydraulic pressure.For the rock mechanics test system of hot dry rock that already has an investment in heating systems,this technology may reduce the cost of the loading subsystem by fully utilizing the temperature changes.This paper presents the basic principle and a typical design of this technical solution.Preliminary feasibility analysis is then conducted based on numerical simulations.Although some technical details still need to be resolved,the feasibility of this loading approach has been preliminarily confirmed.
基金Projects 2008ZX05009-004 supported by the National Key Sci-Tech Major Special Item2006CB705805 by the National Basic Research Program of Chinasupported by the National Basic Research Program of China and "enhanced oil recovery basic theory for low permeability reservoirs" under grant 2002CCA00700
文摘In order to study the effect of time lag and stress loading rates on rock deformation,the conventional stepped stress loading mode was changed into a continuous mode to investigate the effect of effective pressure on permeability and porosity.The time lag effect of rock deformation illustrating the relationship between changes in permeability and steady time was studied.Permeability reduction ratios were measured under different stress loading rates which were achieved by different pump rate settings.The results show that permeability and porosity gradually decrease with increases in effective pressure.Permeability at high effective pressure attains stability quickly.Steady times at low effective pressure are very long.Reduction in permeability at lower stress loading rates is small,while,in contrast,it is large at high stress loading rates.
基金supported by Vehicular Diesel Engine Development Program of China (Grant No. DEDP0202)
文摘Analytical method for the distributions of axial-load and stress is based on elastic assumption, but the threaded connections are often in plastic deformation stage in practice. Meanwhile the strain in the threaded connection is difficult to measure. So it is necessary to study the reliable numerical method. At present neither the convergence analysis of the computational results nor the elastic-plastic analysis in the loading-unloading process are studied. In this paper, von Mises plasticity and kinematic hardening model is used to describe the material response. A new convergence criterion for nonlinear finite element analysis of the loading-unloading process is proposed. An axisymmetric finite element model according to the proposed convergence criterion is developed and used to analyze the distributions of axial-load and stress. It can be conclude that the stress distribution analysis is more dependent on the mesh density than the axial-load distribution analysis. The stress distribution result indicates that with increasing of applied load, the engaged threads close to the nut-bearing surface become plastic firstly. The axial-load distribution result reveals that the load percentage carried by single thread depends on the position of thread and load intensity. When the load is relatively small, the applied load is mainly carried by the engaged threads near the nut-bearing surface, when the load is larger, the differences of percentages for all threads become small. The proposed convergence analyzing procedure is applicable for other nonlinear analyses. The obtained distributions of axial-load and stress can be a reference of engineering application.
文摘The solution of surface displacement of an elliptical crack under compressive-shear loading was obtained by using the complex function method. The closing mode was established by analyzing the geometrical condition of closing crack, and the corresponding critical stress was solved. The result corrects the traditional viewpoint, in which there exist only open or close states for an elliptical crack, and points out that the local closing is also one of crack states. Based on them, the effect of the closed crack on stress intensity factor was discussed in detail, and its rational formulae are put forward.
基金supported by Scientific Research Fund of Hunan Provincial Education Department(Grant No. 12A087)Innovation Fund for Technology Based Firms(Grant No. 09C26214305047)
文摘Autofrettage is an effective measure to even distribution of stresses and raise load-bearing capacity for (ultra-)high pressure apparatus. Currently, the research on autofrettage has focused mostly on specific engineering problems, while general theoretical study is rarely done. To discover the general law contained in autofrettage theory, by the aid of the authors’ previous work and according to the third strength theory, theoretical problems about autofrettage are studied including residual stresses and their equivalent stress, total stresses and their equivalent stress, etc. Because of the equation of optimum depth of plastic zone which is presented in the authors’ previous work, the equations for the residual stresses and their equivalent stress as well as the total stress and their equivalent stress are simplified greatly. Thus the law of distribution of the residual stresses and their equivalent stress as well as the total stress and their equivalent stress and the varying tendency of these stresses are discovered. The relation among various parameters are revealed. The safe and optimum load-bearing conditions for cylinders are obtained. According to the results obtained by theoretical analysis, it is shown that if the two parameters, namely ratio of outside to inside radius, k, and depth of plastic zone, kj, meet the equation of optimum depth of plastic zone, when the pressure contained in an autofrettaged cylinder is lower than two times the initial yield pressure of the unautofrettaged cylinder, the equivalent residual stress and the equivalent total stress at the inside surface as well as the elastic-plastic juncture of a cylinder are lower than yield strength. When an autofrettaged cylinder is subjected to just two times the initial yield pressure of the unautofrettaged cylinder, the equivalent total stress within the whole plastic zone is just identically equal to the yield strength, or it is a constant. The proposed research theoretically depicts the stress state of ultra-)high pressure autofrettaged cylinder more accurately and more reasonably and provides the reference for design of (ultra-)high pressure apparatus.
基金funded by the German research foundation (DFG Grant No. TR534/5-1)
文摘In an extensional shear zone in the Talea Ori, Crete, quartz veins occur in high-pressure low-temperature metamorphic sediments at sites of dilation along shear band boundaries, kink band boundaries and boudin necks. Bent elongate grains grown epitactically from the host rock with abundant fluid inclusion trails parallel to the vein wall indicate vein formation by crack-seal increments during dissolutionprecipitation creep of the host rock. The presence of sutured high-angle grain boundaries and subgrains shows that temperatures were sufficiently high for recovery and strain-induced grain boundary migration, i.e. higher than 300 -350℃, close to peak metamorphic conditions. The generally low amount of strain accumulated by dislocation creep in quartz of the host rock and most veins indicates low bulk stress conditions of a few tens of MPa on a long term. The time scale of stress-loading to cause cyclic cracking and sealing is assumed to be lower than the Maxwell relaxation time of the metasediments undergoing dissolution-precipitation creep at high strain rates(10^(-10) s^(-1) to 10^(-9) s^(-1)), which is on the order of hundred years. In contrast, some veins discordant or concordant to the foliation show heterogeneous quartz microstructures with micro-shear zones, sub-basal deformation lamellae, shortwavelength undulatory extinction and recrystallized grains restricted to high strain zones. These microstructures indicate dislocation glide-controlled crystal-plastic deformation(low-temperature plasticity) at transient high stresses of a few hundred MPa with subsequent recovery and strain-induced grain boundary migration at relaxing stresses and temperatures of at least 300 -350℃. High differential stresses in rocks at greenschist-facies conditions that relieve stress by creep on the long term, requires fast stress-loading rates, presumably by seismic activity in the overlying upper crust. The time scale for stress loading is controlled by the duration of the slip event along a fault, i.e. a few seconds to minutes.This study demonstrates that microstructures can distinguish between deformation at internal low stress-loading rates(to tens of MPa on a time scale of hundred years) and high(coseismic) stress-loading rates to a few hundred MPa on a time scale of minutes.
文摘An experimental-numerical method for measuring dynamic crack propagatingvelocities under stress wave loading is established in this paper. The experiments of thethree-point bend specimen are done on the improved Hopkinson bar. Deflection of loading point,dynamic load and instantaneous crack length are measured, then crack propagating velocities arecalculated. Experiments on 40Cr steel show that the results given by this method have a goodagreement with that obtained by the resistance fracture gage method. Therefore this method isfeasible for measuring crack propagating velocities under high loading rate and will have wideapplication.
文摘According to the Mohr-Coulomb yield criterion, the stress field of the infinite slope is derived under a vertical uniform load q on the top of the slope. It is indicated that elastic and elasto-plastic states would occur in the slope. When q is smaller than the critical load, q(p), the slope is in the elastic state. If q equals q(p), the slope is in the critical state, and the plastic deformation would occur along the critical angle. With the increase of q, the plastic zone would extend, and the slope is in the elasto-plastic State. If q equals limit load, the slope is in the limit equilibrium state. The slope may be divided into three zones. Some charts of the critical angle, the critical and limit load coefficients are presented in this paper.
文摘A simplified method of designing fully stressed piles and beams with optimum length in a Winkler's medium,end-loaded by an orthogonal force and without any point constraint,is proposed. A numerical algorithm distributing the mass by means of the Fully Stressed Design ( FSD) method and updating the moment by finite elements has been first implemented. The use of the FSD method is in general quite simple,and allows to obtain optimum,or close to the optimum,solutions. After having distributed the mass through the FSD method,the length has been finally optimised by means of a heuristic procedure.
基金funded by the Joint Earthquake Science Foundation of China Earthquake Administration(Grant No.C08034)
文摘Based on the studies of the predecessors, and contrasting the modes of stress loading with water level and water temperature response characteristics of a well-aquifer system, this paper draws a preliminary conclusion on the mechanisms of water temperature responses in a well caused by three modes of stress loading, i.e. gas escape, heat dispersion and cold water penetration mechanisms for elastic seismic wave stress loading; the fracture seepage mechanism for seismic wave stress loading and the hydrodynamic mechanism for earth tide stress loading and stress-dissipative heat mechanism for long period slow stress loading in the earthquake preparation stage. This paper illustrates the typical observation examples for each mode of stress loading and makes a preliminary study on their mechanisms.
基金This work was supported by the National Science Foundation of China
文摘The influence of temperature-dependent properties on thermal stresses response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loaning and high temperature gradient environment is studied. The thermal conductivity of material is considered to be dependent on the temperature. In this paper, the thermal stresses response of the material is calculated rising a nonlinear finite element method. Emphasis is placed on the influence of temperature-dependent properties on the thermal stresses response characteristics, the thermal stresses relaxation property and the thermal stresses history under the different graded compositional distributions and different heat flux magnitudes. Through tile analysis. it is suggested that the influence of temperature-dependent properties can not be neglected In the thermal stresses response analysis and the optimum design process of the material must be based on the temperature-dependent thermo-elastic-plastic theory.
基金the National Natural Science Foundation of China
文摘The dynamic stress intensity factor history for a half plane crack in an otherwise unbounded elastic body,with the crack faces subjected to a traction distribution consisting of two pairs of combined mode point loads that move in a direction perpendicular to the crack edge is considered.The analytic expression for the combined mode stress intensity factors as a function of time for any point along the crack edge is obtained.The method of solution is based on the application of integral transform together with the Wiener-Hopf technique and the Cagniard-de Hoop method. Some features of the solution are discussed and graphical results for various point load speeds are presented.
文摘The aim of the research work was to numerically investigate the residual stresses induced between the layers of fiber metal laminate (FML) cylinder (glass/epoxy reinforced aluminum laminates) under buckling hydrostatic loading. For the analysis of buckling behavior of FML cylinders, various fiber orientations such as 0/90°, 60/30°, ±45° and ±55° and different FRP thickness of 1, 2, and 3 mm were considered. The aluminum cylinder of inner diameter 80 mm, length 800 mm and wall thickness 1 mm was modeled with SHELL281 element type and a total of 1033 elements were used for computing the induced residual stresses between the layers. The results show that magnitude of residual stresses between the layers decreased along the thickness from outer layer towards the inner layer in sine wave form. The maximum residual Von-Mises stress was at inner aluminum layer while the maximum residual radial stress was at the outermost layer of FML cylinder due to the inward pressure. Among all types of FML cylinder 0/90° fiber oriented FML cylinder exhibited the least radial stress and a maximum Von-Mises stress along the FRP thickness.
文摘Transient stresses around two collinear cracks which lie in parallel with theinterface of the two dissimilar half-planes are studied in this article.The surfaces ofthe cracks are sheared suddenly. Application of the Fourier and Laplace transforms technique reduces the problem to that of solving dual integrai equations.To solvethese,the differences of.the crack surface displacements are expanded in a series offunctions which are automatically zero outside of the cracks. The unknown coefficients accompanied in the series are determined by the Schmidt method. The stress intensity .factors are defined in the Laplace transform domain and these are inverted numerically in the physical space .As an example ,the dynamic stress intensity factors around two cracks in a ceramic and steel bonded composite are numerically calculated.
文摘The load distribution and calculating formulae of the contact stresses in the rotor worm and stator helical surface for toroidal drive are given. The effecting factors on contact stresses and their effects are analyzed. The results is useful for reference purposes in manufacture and design of the drive.
文摘A micromechanics-based model is established. The model takes the interaction among sliding cracks into account, and it is able to quantify the effect of various parameters on the localization condition of damage and deformation for brittle rock subjected to compressive loads. The closed-form explicit expression for the complete stress-strain relation of rock containing microcracks subjected to compressive loads was obtained. It is showed that the complete stress-strain relation includes linear elasticity,nonlinear hardening,rapid stress drop and strain softening.The behavior of rapid stress drop and strain softening is due to localization of deformation and damage. Theoretical predictions have shown to be consistent with the experimental results.
文摘This paper deals with the determination of the thermo-elastic displacements and stresses in a multi-layered body set up in different layers of different thickness having different elastic properties due to the application of heat and a concentrated load in the uppermost surface of the medium. Each layer is assumed to be made of homogeneous and isotropic elastic material. The relevant displacement components for each layer are taken to be axisymmetric about a line, which is perpendicular to the plane surfaces of all layers. The stress function for each layer, therefore, satisfies a single equation in absence of any body forces. The equation is then solved by integral transform technique. Analytical expressions for thermo-elastic displacements and stresses in the underlying mass and the corresponding numerical codes are constructed for any number of layers. However, the numerical comparison is made for three and four layers.
基金Supported by the Fund of Hunan Provincial Construction Department(No.06-468-8)
文摘The mechanical performance of recycled aggregate concrete (RAC) is investigated. An experiment on the complete stress-strain curve under uniaxial compression loading of RAC is carried out. The experimental results indicate that the peak stress, peak strain, secant modulus of the peak point and original point increase with the strength grade of RAC enhanced. On the contrary, the residual stress of RAC decreases with the strength grade enhancing, and the failure of RAC is often broken at the interface between the recycled aggregate and the mortar matrix. Finally, the constitutive model of stress-strain model of RAC has been constituted, and the results from the constitutive model of stress-strain meet the experiment results very well.