Ignoring the influence of flow velocity and flow temperature on muffling performance,performance tests were conducted without airflow in the development phase of the muffler which accounts to the difficulty of obtaini...Ignoring the influence of flow velocity and flow temperature on muffling performance,performance tests were conducted without airflow in the development phase of the muffler which accounts to the difficulty of obtaining a perfect match between the actual noise reduction effect and the design goal.Based on the two-load test theory,a set of high-temperature and high-speed airflow simulation measurement devices for the muffler has been built.In order to avoid the impact of high-temperature and high-speed airflow on the sensor,a high temperature resistant sensor holder has been designed for the test rig.The sound pressure has been measured in the pipe by using the lead-out measurement.In addition,a variable impedance load is placed at the end of the test tube to realize the switch between two different impedance loads by the wave handle of the variable impedance load.A sound source correction method is proposed to decrease the random fluctuation of the spectral characteristics of the output noise signal,which is caused by the acoustic impedance variation at the connection between the transition pipeline and the combined sound source system.Finally,an acoustic software has been used to calculate the transmission loss of the muffler in the presence of high temperature airflow.In comparing the experimental measurements and the simulation results,the small difference shows that:the bench not only can effectively simulate high-temperature and flow velocity environment of the engine but also accurately test the transmission loss of the muffler.展开更多
基金Supported by National Key Research and Development Program(2016YFD0700704B)。
文摘Ignoring the influence of flow velocity and flow temperature on muffling performance,performance tests were conducted without airflow in the development phase of the muffler which accounts to the difficulty of obtaining a perfect match between the actual noise reduction effect and the design goal.Based on the two-load test theory,a set of high-temperature and high-speed airflow simulation measurement devices for the muffler has been built.In order to avoid the impact of high-temperature and high-speed airflow on the sensor,a high temperature resistant sensor holder has been designed for the test rig.The sound pressure has been measured in the pipe by using the lead-out measurement.In addition,a variable impedance load is placed at the end of the test tube to realize the switch between two different impedance loads by the wave handle of the variable impedance load.A sound source correction method is proposed to decrease the random fluctuation of the spectral characteristics of the output noise signal,which is caused by the acoustic impedance variation at the connection between the transition pipeline and the combined sound source system.Finally,an acoustic software has been used to calculate the transmission loss of the muffler in the presence of high temperature airflow.In comparing the experimental measurements and the simulation results,the small difference shows that:the bench not only can effectively simulate high-temperature and flow velocity environment of the engine but also accurately test the transmission loss of the muffler.