The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,mos...The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.展开更多
This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were appl...This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.展开更多
A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of...A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ...The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.展开更多
In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presen...In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.展开更多
This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 fee...This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark-β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological(MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.展开更多
The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the ...The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.展开更多
The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of t...The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.展开更多
Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls,...Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls, or combined Walls and Frames (also known as Dual System). In this study, finite element based software, ETABS, was used to generate and analyse three-dimensional building models for the assessment of the relative effectiveness of the various lateral load resisting systems. Three models were used, one each for the three resisting systems. Each model consisted of three samples representing three different building heights of 45 m, 75 m, and 99 m. Wind Design Spreadsheet complying with the appropriate British Standards was used to compute preliminary wind load coefficients using the wind speed values from the relevant wind isopleth map of Nigeria as primary data. Lateral wind load was then applied at floor levels of each of the building samples. Each building sample was subjected to three-dimensional analysis for the determination of both the lateral displacements of storey tops and interstorey drifts. The results of the work showed that the dual system was the most efficient lateral-load resisting system based on deflection criterion, as they yielded the least values for lateral displacements and inter-storey drifts. The moment frame was the least stiff of the resisting systems, yielding the highest values of both the lateral displacement and the inter-storey drift.展开更多
This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its ev...This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.展开更多
A new and unique processing method for fabricating stress biased, monolithic ceramic elements for large dis placement actuators is reported. Reduced and internally bised oxide wafer (RAINBOW) ceramics show excellent...A new and unique processing method for fabricating stress biased, monolithic ceramic elements for large dis placement actuators is reported. Reduced and internally bised oxide wafer (RAINBOW) ceramics show excellent properties such as high displacement under applied electric field and enhanced load bearing capabilities. The actuating mechanism, structure and properties of the RAINBOW ceramics are reviewed. Finally, the developing direction is also discussed.展开更多
Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorit...Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorithms, several different 3D electronic speckle pattern interferometry(ESPl) systems for displacement and strain measurements have been achieved and commercialized. This paper provides a review of the recent developments in ESPI systems for 3D displacement and strain measurement. After an overview of the fundamentals of ESP! theory, temporal phase-shift, and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI system, which is suited well for static measurement, and by the spatial phase-shift ESPI system, which is particularly useful for dynamic measurement, are discussed. For each method, the basic theory, a brief derivation and different optical layouts are presented. The state of art application, potential and limitation of the ESPI systems are shown and demonstrated.展开更多
This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force...This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.展开更多
As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displac...As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displacement vibration is to enhance the radial magnetic bearing stiffness through increasing the control currents, but the suitable control currents are not easy to be provided, especially, to be provided in real time. To implement real time unbalance displacement vibration compensation, through analyzing active magnetic bearings (AMB) mathematical model, the existence of radial displacement runout is demonstrated. To restrain the runout, a new control scheme-adaptive iterative learning control (A1LC) is proposed in view of rotor frequency periodic uncertainties during the startup process. The previous error signal is added into AILC learning law to enhance the convergence speed, and an impacting factor/3 influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects, As a feed-forward compensation controller, AILC can provide one tmknown and perfect compensatory signal to make the rotor rotate around its geometric axis through power amplifier and radial magnetic bearings. To improve AMB closed-loop control system robust stability, one kind of incomplete differential PID feedback controller is adopted. The correctness of the AILC algorithm is validated by the simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft. And the compensation for fixed rotational frequency is implemented in the actual AMB system. The simulation and experiment results show that the compensation scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system displacement minimum compensation at one fixed frequency, and improve the stability of the control system. The proposed research provides a new adaptive iterative/earning control algorithm and control strategy for AMB displacement minimum compensation, and provides some references for time-varied displacement minimum compensation.展开更多
The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator cont...The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.展开更多
The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing ...The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.展开更多
Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and thos...Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.展开更多
On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, th...On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, that elastic distortion occurs when the pile is loaded, that the displacement of pile is in accord with that of the soil, and that the uplift pile failure is regarded as the soil failure, a rational calculation method was proposed for calculating the deformation, ultimate displacement and shear resistance of piles. The distributions of frictional resistance and the shear displacement along the pile length were obtained with the method. The comparisons were made between the measurement results and the present results. The present theoretical results agree well with the measurement results, with the average difference being less than 12% before failure. The comparisons show that the proposed method is reasonable for uplift design and engineering construction of piles.展开更多
基金The Shandong Provincial Natural Science Foundation under contract No.ZR2023QD045the National Natural Science Foundation of China under contract Nos 42406026,42076024 and 42106032supported by the Taishan Scholar Program under contract No.tstp20221148。
文摘The three-dimensional displacements caused by ocean loading effects are significant enough to impact spatial geodetic measurements on sub-daily or longer timescales,particularly in the vertical direction.Currently,most tide models incorporate the distribution of vertical displacement loading tides;however,their accuracy has not been assessed for the equatorial and Indian Ocean regions.Global Positioning System(GPS)observations provide high-precision data on sea-level changes,enabling the assessment of the accuracy and reliability of vertical displacement tide models.However,because the tidal period of the K_(2) constituent is almost identical to the orbital period of GPS constellations,the estimation of the K_(2) tidal constituent from GPS observations is not satisfactory.In this study,the principle of smoothness is employed to correct the systematic error in K_(2) estimates in GPS observations through quadratic fitting.Using the adjusted harmonic constants from 31 GPS stations for the equatorial and Indian Ocean,the accuracy of eight major constituents from five global vertical displacement tide models(FES2014,EOT11a,GOT4.10c,GOT4.8,and NAO.99b)is evaluated for the equatorial and Indian Ocean.The results indicate that the EOT11a and FES2014 models exhibit higher accuracy in the vertical displacement tide models for the equatorial and Indian Ocean,with root sum squares errors of 2.29 mm and 2.34 mm,res-pectively.Furthermore,a brief analysis of the vertical displacement tide distribution characteristics of the eight major constituents for the equatorial and Indian Ocean was conducted using the EOT11a model.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379118 and 51639002)SDUST Scientific Found(Grant No.2015KYTD104)
文摘This paper presents a series of monotonically combined lateral loading tests to investigate the bearing capacity of the MSCs (modified suction caissons) in the saturated marine fine sand. The lateral loads were applied under load- and displacement-controlled methods at the loading eccentricity ratios of 1.5, 2.0 and 2.5. Results show that, in the displacement-controlled test, the deflection-softening behavior of load-deflection curves for MSCs was observed, and the softening degree of the load-deflection response increased with the increasing external skirt length or the decreasing loading eccentricity. It was also found that the rotation center of the MSC at failure determined by the load-controlled method is slightly lower than that by the displacement-controlled method. The calculated MSC capacity based on the rotation center position in serviceability limit state is relatively conservative, compared with the calculated capacity based on the rotation center position in the ultimate limit state. In the limit state, the passive earth pressures opposite the loading direction under load- and displacement-controlled methods decrease by 46% and 74% corresponding to peak values, respectively; however, the passive earth pressures in the loading direction at failure only decrease by approximately 3% and 7%, compared with their peak values.
文摘A novel variable displacement compressor (VDC) for automotive air conditioner (AAC) is introduced, which inherits the advantages of common wobble plate type VDC. It has fewer parts and makes less noise, and instead of pneumatic valve the displacement is controlled by electronic control valve. In order to know the control mechanism well and get a good control effect, a mathematical model for the variable displacement mechanism is developed according to the geometrical and kinematical information of the compressor. Using the model, the effect of relevant parameters on variable displace control is estimated. It is helpful to make the optimum decision in the flow control of AAC. As the novel displacement control device, the structure and control rule of electronic control valve is introduced. It can get better effect than the conventional pneumatic valves. And by using this new electronic control device, the optimum systemic control of AAC is available.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
文摘The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes.
基金supported by the Open Fund of State Key Laboratory of High speed Railway Track Technology(2022YJ127-1)National Natural Science Foundation of China(52104125,41941018)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2022JQ-304)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)。
文摘In the construction of a soft rock tunnel,it is critical to accurately estimate the pre-stressed anchor support parameters for surrounding rock reinforcement;otherwise,engineering disasters may occur.This paper presents a support parameter selection method that aims to allow deformation as a control objective,which was applied to the tunnel located in Muzailing Highway,Min County,Dingxi City,Gansu Province,China.Through theoretical analysis,we have identified five factors that influence pre-stressing anchorages.The selection of mechanical parameters for the rock mass was carried out using an inverse analysis method.Compared with the measured data,the maximum displacement error of the numerical simulation results was only 0.07 m.The length of anchor cable,circumferential spacing of anchor cable,longitudinal spacing,and pre-stress index are adopted as the input parameters for the support vector machine neural network model based on particle swarm optimization(PSO-LSSVM).Besides,the vault subsidence and the maximum deformation of surrounding rock are considered as output values(performance indices).The goodness of fit between the predicted values and the simulated values exceeds 0.9.Finally,all support parameters within the acceptable deformation range are calculated.The optimal support variables are derived by considering the construction cost and duration.The field application results show that it is feasible to construct the sample database utilizing the numerical simulation approach by taking the displacement as the control target and using the neural network to specify the appropriate support parameters.
基金Scientific Research Fund of the Institute of Engineering Mechanics,CEA under Grant No.2016B09,2017A02 and 2016A06the National Natural Science Foundation of China under Grant No,51378478,51408565,51678538 and 51161120360the National ScienceTechnology Support Plan Projects(2016YFC0701106)
文摘This paper employs a velocity plus displacement(V+D)-based equivalent force control(EFC) method to solve the velocity/displacement difference equation in a real-time substructure test. This method uses type 2 feedback control loops to replace mathematical iteration to solve the nonlinear dynamic equation. A spectral radius analysis of the amplification matrix shows that the type 2 EFC-explicit, Newmark-β method has beneficial numerical characteristics for this method. Its stability limit of Ω = 2 remains unchanged regardless of the system damping because the velocity is achieved with very high accuracy during simulation. In contrast, the stability limits of the central difference method using direct velocity prediction and the EFC-average acceleration method with linear interpolation are shown to decrease with an increase in system damping. In fact, the EFC-average acceleration method is shown to change from unconditionally stable to conditionally stable. We also show that if an over-damped system with a damping ratio of 1.05 is considered, the stability limit is reduced to Ω =1.45. Finally, the results from an experiment with a single-degree-of-freedom structure installed with a magneto-rheological(MR) damper are presented. The results demonstrate that the proposed method is able to follow both displacement and velocity commands with moderate accuracy, resulting in improved test performance and accuracy for structures that are sensitive to both velocity and displacement inputs. Although the findings of the study are promising, additional test data and several further improvements will be required to draw general conclusions.
文摘The boost converter feeding a constant power load (CPL) is a non-minimum phase system that is prone to the destabilizing effects of the negative incremental resistance of the CPL and presents a major challenge in the design of stabilizing controllers. A PWM-based current-sensorless robust sliding mode controller is developed that requires only the measurement of the output voltage. An extended state observer is developed to estimate a lumped uncertainty signal that comprises the uncertain load power and the input voltage, the converter parasitics, the component uncertainties and the estimation of the derivative of the output voltage needed in the implementation of the controller. A linear sliding surface is used to derive the controller, which is simple in its design and yet exhibits excellent features in terms of robustness to external disturbances, parameter uncertainties, and parasitics despite the absence of the inductor’s current feedback. The robustness of the controller is validated by computer simulations.
基金financially supported by the National Key R&D Program of China (2021YFA1003501)the National Natural Science Foundation of China (No.U1906233,11732004)the Fundamental Research Funds for the Central Universities (DUT20ZD213,DUT20LAB308)。
文摘The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load-displacement curves of carcasses with different inner diameter in plastic states under radial compression.The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load-displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
文摘Due to excessive displacements of tall buildings occasioned by lateral loads, lateral load resisting systems are usually provided to curtail the load effect. The resistance may be offered by Frame Action, Shear Walls, or combined Walls and Frames (also known as Dual System). In this study, finite element based software, ETABS, was used to generate and analyse three-dimensional building models for the assessment of the relative effectiveness of the various lateral load resisting systems. Three models were used, one each for the three resisting systems. Each model consisted of three samples representing three different building heights of 45 m, 75 m, and 99 m. Wind Design Spreadsheet complying with the appropriate British Standards was used to compute preliminary wind load coefficients using the wind speed values from the relevant wind isopleth map of Nigeria as primary data. Lateral wind load was then applied at floor levels of each of the building samples. Each building sample was subjected to three-dimensional analysis for the determination of both the lateral displacements of storey tops and interstorey drifts. The results of the work showed that the dual system was the most efficient lateral-load resisting system based on deflection criterion, as they yielded the least values for lateral displacements and inter-storey drifts. The moment frame was the least stiff of the resisting systems, yielding the highest values of both the lateral displacement and the inter-storey drift.
文摘This paper presents experiment results of the measurement conducted at the Roznew Dam power plant. For a course of starting and operating of turbo-plants, downstream face of the dam was monitored in relation to its eventual displacements on direction parallel to the construction axis. For the purpose of the experiment, geodetic measurement techniques and 2D DIC (digital image correlation) method (utilizing photographs of the object recorded with digital camera) were compared with regard to credibility, efficiency and accuracy. The vertical and horizontal displacements were monitored by tachometers measurements. The deformations in x-axis and y-axis on the wall surface was monitored by 2D DIC. It has been noticed that 2D DIC method is a surface method, continuous--not discreet. It allows for continuous observations of surface deformations, which is not possible in case of tachemetric measurements. Despite many advantages, the 2D DIC method lacks unambiguous evaluation of precision and relevance of designated displacements, which is rather significant for possibilities of utilization in technical control of large engineered objects. It should be also marked that the tachometric method is more reliable but is more laborious. Research of this type might comprise additional element for the assessment of the influence of dynamic loads, such as activating turbine water flow, onto the overall condition of the surveyed structure.
文摘A new and unique processing method for fabricating stress biased, monolithic ceramic elements for large dis placement actuators is reported. Reduced and internally bised oxide wafer (RAINBOW) ceramics show excellent properties such as high displacement under applied electric field and enhanced load bearing capabilities. The actuating mechanism, structure and properties of the RAINBOW ceramics are reviewed. Finally, the developing direction is also discussed.
基金supported by National Natural Science Foundation of China(61533013,61273144)Scientific Technology Research and Development Plan Project of Tangshan(13130298B)Scientific Technology Research and Development Plan Project of Hebei(z2014070)
基金supported by National Natural Science Foundation of China(Grant Nos.51275054,51075116)
文摘Three dimensional(3D) displacements, which can be translated further into 3D strain, are key parameters tor design, manufacturing and quality control. Using different optical setups, phase-shift methods, and algorithms, several different 3D electronic speckle pattern interferometry(ESPl) systems for displacement and strain measurements have been achieved and commercialized. This paper provides a review of the recent developments in ESPI systems for 3D displacement and strain measurement. After an overview of the fundamentals of ESP! theory, temporal phase-shift, and spatial phase-shift techniques, 3D deformation measurements by the temporal phase-shift ESPI system, which is suited well for static measurement, and by the spatial phase-shift ESPI system, which is particularly useful for dynamic measurement, are discussed. For each method, the basic theory, a brief derivation and different optical layouts are presented. The state of art application, potential and limitation of the ESPI systems are shown and demonstrated.
文摘This paper builds up an accurate nonlinear mathematical model of anelectro-hydraulic force/ torque servo control system, and provides a thorough theoretical analysison the feedforward compensation for extraneous force/torque, whose limitation is analyzed andrevealed. The nonlinear factors and the servo valve dynamics have much influence on the systemcharacteristics. Subsequently a velocity syn-chronizing-compensation method by using the controlsignal of the control actuator is proposed, which can reduce the lagging effects for the betterperformance. For the reason of similarity between the model of control actuator and that of the loadsimulator, the proposed method performs well against the influence of nonlinear factors. Thesimulations and the experiments confirm that this control scheme results in a quick response,robustness, and excellent ability against disturbance.
基金supported by National Natural Science Foundation of China (Grant No. 50437010)National Hi-tech Research and Development Program of China (863 Program,Grant No. 2006AA05Z205)Fund of Aeronautics Science of China (Grant No. 2008ZB52018)
文摘As the dynamic stiffness of radial magnetic bearings is not big enough, when the rotor spins at high speed, unbalance displacement vibration phenomenon will be produced. The most effective way for reducing the displacement vibration is to enhance the radial magnetic bearing stiffness through increasing the control currents, but the suitable control currents are not easy to be provided, especially, to be provided in real time. To implement real time unbalance displacement vibration compensation, through analyzing active magnetic bearings (AMB) mathematical model, the existence of radial displacement runout is demonstrated. To restrain the runout, a new control scheme-adaptive iterative learning control (A1LC) is proposed in view of rotor frequency periodic uncertainties during the startup process. The previous error signal is added into AILC learning law to enhance the convergence speed, and an impacting factor/3 influenced by the rotor rotating frequency is introduced as learning output coefficient to improve the rotor control effects, As a feed-forward compensation controller, AILC can provide one tmknown and perfect compensatory signal to make the rotor rotate around its geometric axis through power amplifier and radial magnetic bearings. To improve AMB closed-loop control system robust stability, one kind of incomplete differential PID feedback controller is adopted. The correctness of the AILC algorithm is validated by the simulation of AMB mathematical model adding AILC compensation algorithm through MATLAB soft. And the compensation for fixed rotational frequency is implemented in the actual AMB system. The simulation and experiment results show that the compensation scheme based on AILC algorithm as feed-forward compensation and PID algorithm as close-loop control can realize AMB system displacement minimum compensation at one fixed frequency, and improve the stability of the control system. The proposed research provides a new adaptive iterative/earning control algorithm and control strategy for AMB displacement minimum compensation, and provides some references for time-varied displacement minimum compensation.
文摘The paper proposes a novel H∞ load frequency control(LFC) design method for multi-area power systems based on an integral-based non-fragile distributed fixed-order dynamic output feedback(DOF) tracking-regulator control scheme. To this end, we consider a nonlinear interconnected model for multiarea power systems which also include uncertainties and timevarying communication delays. The design procedure is formulated using semi-definite programming and linear matrix inequality(LMI) method. The solution of the proposed LMIs returns necessary parameters for the tracking controllers such that the impact of model uncertainty and load disturbances are minimized. The proposed controllers are capable of receiving all or part of subsystems information, whereas the outputs of each controller are local. These controllers are designed such that the resilient stability of the overall closed-loop system is guaranteed. Simulation results are provided to verify the effectiveness of the proposed scheme. Simulation results quantify that the distributed(and decentralized) controlled system behaves well in presence of large parameter perturbations and random disturbances on the power system.
基金Science and Technology Fund of NWPU Under Grant No. M450211Seed Fund of NWPU Under Grant No. Z200534
文摘The recently proposed mega-sub controlled structure (MSCS), a new type of structure associated with the design and construction of super-tall buildings, has attracted the attention of designers for use in enhancing the control effectiveness in mega-frame buildings. In this paper, a dynamic equation and method to assemble parameter matrixes for a mega-sub controlled structure under random wind loads is presented. Semi-active control using magnetorheological dampers for the MSCS under random wind loads is investigated, and is compared with a corresponding system without dampers. A parametric study of the relative stiffness ratio and relative mass ratio between the mega-frame and the substructures, as well as the additional column stiffness ratio that influences the response control effectiveness of the MSCS, is discussed. The studies reveal, for the first time, that different control mechanisms exist. The results indicate that the proposed structure employing semi-active control can offer an effective control mechanism. Guidelines for selecting parameters are provided based on the analytical study.
文摘Current high power load simulators are generally incapable of obtaining both high loading performance and high energy efficiency. Simulators with high energy efficiency are used to simulate static-state load, and those with high dynamic performance typically have low energy efficiency. In this paper, the variants of secondary control(VSC) with power recovery are developed to solve this problem for loading hydraulic driving devices that operate under variable pressure, unlike classical secondary control(CSC) that operates in constant pressure network. Hydrostatic secondary control units are used as the loading components, by which the absorbed mechanical power from the tested device is converted into hydraulic power and then fed back into the tested system through 4 types of feedback passages(FPs). The loading subsystem can operate in constant pressure network, controlled variable pressure network, or the same variable pressure network as that of the tested device by using different FPs. The 4 types of systems are defined, and their key techniques are analyzed, including work principle, simulating the work state of original tested device, static operation points, loading performance, energy efficiency, and control strategy, etc. The important technical merits of the 4 schemes are compared, and 3 of the schemes are selected, designed, simulated using AMESim and evaluated. The researching results show that the investigated systems can simulate the given loads effectively, realize the work conditions of the tested device, and furthermore attain a high power recovery efficiency that ranges from 0.54 to 0.85, even though the 3 schemes have different loading performances and energy efficiencies. This paper proposes several loading schemes that can achieve both high dynamic performance and high power recovery efficiency.
基金Project(05-0686) supported by the Program for New Century Excellent Talents in UniversityProject(200550) supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China
文摘On the assumptions that the shear resistance increases linearly with increasing shear displacement between the uplift pile and surrounding soil, that the axis force is distributed as parabola along the pile length, that elastic distortion occurs when the pile is loaded, that the displacement of pile is in accord with that of the soil, and that the uplift pile failure is regarded as the soil failure, a rational calculation method was proposed for calculating the deformation, ultimate displacement and shear resistance of piles. The distributions of frictional resistance and the shear displacement along the pile length were obtained with the method. The comparisons were made between the measurement results and the present results. The present theoretical results agree well with the measurement results, with the average difference being less than 12% before failure. The comparisons show that the proposed method is reasonable for uplift design and engineering construction of piles.