期刊文献+
共找到510篇文章
< 1 2 26 >
每页显示 20 50 100
A novel approach to the dynamic response analysis of Euler-Bernoulli beams resting on a Winkler soil model and subjected to impact loads
1
作者 Adolfo Foriero Filippo Santucci de Magistris Giovanni Fabbrocino 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期389-401,共13页
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor... This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem. 展开更多
关键词 beam-Winkler-soil model sub-grade moduli impact load impact distributed line load dynamic solution impact amplification factor
下载PDF
Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading 被引量:2
2
作者 S.M.Anas Mehtab Alam Mohd Shariq 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第1期12-34,共23页
Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impac... Reinforced concrete(RC)structures are generally designed to carry quasi-static gravity loads through almost indispensable components namely slab,however,it may be subjected to high intense loads induced from the impact of projectiles generated by the tornado,falling construction equipment,and also from accidental explosions during their construction and service lifespan.Impacts due to rock/boulder falls do occur on the structures located especially in hilly areas.Such loadings are not predictable but may cause severe damage to the slab/structure.It stimulates structural engineers and researchers to investigate and understand the dynamic response of RC structures under such impulsive loading.This research work first investigates the performance of 1000×1000×75 mm^(3)conventionally reinforced two-way spanning normal strength concrete slab with only tension reinforcement(0.88%)under the concentric impact load(1035 N)using the finite element method based computer code,ABAQUS/Explicit-v.6.15.The impact load is delivered to the centroid of the slab using a solid-steel cylindroconical impactor(drop weight)with a flat nose of diameter 40 mm,having a total mass of 105 kg released from a fixed height of 2500 mm.Two popular concrete constitutive models in ABAQUS namely;Holmquist-Johnson-Cook(HJC)and Concrete Damage Plasticity(CDP),with strain rate effects as per fib MODEL CODE 2010,are used to model the concrete material behavior to impact loading and to simulate the damage to the slab.The slab response using these two models is analyzed and compared with the impact test results.The strain rate effect on the reinforcing steel bars has been incorporated in the analysis using the Malvar and Crawford(1998)approach.A classical elastoplastic kinematic idealization is considered to model the steel impactor and support system.Results reveal that the HJC model gives a little overestimation of peak displacement,maximum acceleration,and damage of the slab while the predictions given by the CDP model are in reasonable agreement with the experimental test results/observations available in the open literature.Following the validation of the numerical model,analyses have been extended to further investigate the damage response of the slab under eccentric impact loadings.In addition to the concentric location(P1)of the impacting device,five locations on a quarter of the slab i.e.,two along the diagonal(P2&P3),the other two along the mid-span(P4&P5),and the last one(P6)between P3 and P5,covering the entire slab,are considered.Computational results have been discussed and compared,and the evaluation of the most damaging location(s)of the impact is investigated.It has been found that the most critical location of the impact is not the centroid of the slab but the eccentric one with the eccentricity of 1/6th of the span from the centroid along the mid-span section. 展开更多
关键词 RC slabs impact loading Eccentric impacts Concrete models Finite element analysis Damage profiles Stresses Peak acceleration Failure modes Damage dissipation energy CRACKING Drop-weight locations
下载PDF
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES 被引量:4
3
作者 G.Z.Kang Q.Gao J.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期431-436,共6页
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room a... Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 4 00-600℃ for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results. 展开更多
关键词 constitutive model RATCHETING elevated temperature multiaxial loading
下载PDF
Mesoscopic modelling of UHPCC material under dynamic tensile loadings
4
作者 Xiang-zhen Kong Shang-bin Yang +3 位作者 Tao Zhang Qin Fang Heng-bo Xiang Rui-wen Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第5期75-91,共17页
This paper presents a new 3D mesoscopic model of ultra-high performance cement-based composite(UHPCC)to investigate its dynamic tensile behavior.In this model,the UHPCC is regarded as a two-phase material composed of ... This paper presents a new 3D mesoscopic model of ultra-high performance cement-based composite(UHPCC)to investigate its dynamic tensile behavior.In this model,the UHPCC is regarded as a two-phase material composed of cementitious matrix and randomly distributed fibers.The model is established using the commercial software LS-DYNA and involves generating the randomly distributed fiber elements with considerations of diameter,length,orientation and volume fraction,and then fully constraining them with the matrix.In particular,to capture the slipping effect between fibers and matrix that has a strong influence on the dynamic tensile behavior,the fibers are modelled by a fictitious material represented by the load-slip relation.The strain-rate effect of slipping force neglected in most of previous studies is considered by calibrating constitutive parameters of the fictitious material under different strain-rates based on the single fiber pullout tests.Finally,the 3D mesoscopic model is validated against three sets of tension-dominated experiments covered a wide range of loading intensity.Numerical predictions demonstrate that strain-rate effect of slipping force must be considered,and the neglect of it may lead to a great underestimation of the dynamic tensile strength of UHPCC material and would unavoidably underestimate the blast resistance of UHPCC components. 展开更多
关键词 UHPCC Dynamic tensile behavior Mesoscopic model Strain-rate effect impact and blast loadings
下载PDF
Catastrophe model and its experimental verification ofstatic loading rock system under impact load 被引量:2
5
作者 左宇军 李夕兵 +3 位作者 王卫华 张义平 马春德 闫长斌 《Journal of Central South University of Technology》 EI 2006年第3期281-285,共5页
According to the catastrophe model for impact buckling of static loading structures, a new catastrophe model for impact loading failure of a static loading rock system was established, and one dimension (1D) catastrop... According to the catastrophe model for impact buckling of static loading structures, a new catastrophe model for impact loading failure of a static loading rock system was established, and one dimension (1D) catastrophe model was analyzed. The analysis results indicate that the furcation collection where catastrophe may take place is not only decided by mechanical system itself but also relates to exterior loading, which is different from the results obtained under mono-static loading where the bifurcation collection is only determined by mechanics of the system itself and has nothing to do with exterior loading. In addition, the corresponding 1D coupled static-dynamic loading experiment is designed to verify the analysis results of catastrophe model. The test is done with Instron 1342 electro-servo controlled testing system, in which medium strain rate is caused by monotony rising dynamic load. The parameters are obtained combining theoretical model with experiment. The experimental and theoretical curves of critical dynamic load vs static load are rather coincided, thus the new model is proved to be correct. 展开更多
关键词 static loading rock system impact load INSTABILITY catastrophic model coupled static-dynamic loading
下载PDF
Failure load prediction of adhesive joints under different stress states over the service temperature range of automobiles 被引量:1
6
作者 Qin Guofeng Na Jingxin +3 位作者 Mu Wenlong Tan Wei Liu Haolei Pu Leixin 《Journal of Southeast University(English Edition)》 EI CAS 2018年第4期508-516,共9页
To predict the failure loads of adhesive joints under different stress states over the service temperature range of automobiles,adhesively bonded carbon fiber reinforced plastic( CFRP)/aluminum alloy joints under shea... To predict the failure loads of adhesive joints under different stress states over the service temperature range of automobiles,adhesively bonded carbon fiber reinforced plastic( CFRP)/aluminum alloy joints under shear stress state( thickadherend shear joints,TSJ),normal stress state( butt joints,BJ) and combined shear and normal stress states( scarf joints with scarf angle 45°,SJ45°) were manufactured and tested at-40,-20,0,20,40,60 and 80 ℃,respectively. The glass transition temperature Tgof the adhesive and CFRP,failure loads and fracture surfaces were used to analyze the failure mechanism of CFRP/aluminum alloy joints at different temperatures. A response surface,describing the variations of quadratic stress criteria with temperature,was established and introduced into the cohesive zone model( CZM) to carry out a simulation analysis. Results show that the failure of CFRP/aluminum alloy joints was determined collectively by the mechanical performances of adhesive and CFRP. Besides,reducing temperature or increasing the proportion of normal stress of adhesive layer was more likely to cause fibre tear or delamination of CFRP,resulting in a more obvious effect of CFRP. The validity of the prediction method was verified by the test of scarf joints with the scarf angle of 30°( SJ30°) and 60°( SJ60°) at-10 and 50 ℃. 展开更多
关键词 automobiles adhesive joints failure loads temperature cohesive zone model
下载PDF
Parameter calibration of the tensile-shear interactive damage constitutive model for sandstone failure
7
作者 Yun Shu Zheming Zhu +4 位作者 Meng Wang Weiting Gao Fei Wang Duanying Wan Yuntao Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1153-1174,共22页
The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The bas... The tensile-shear interactive damage(TSID)model is a novel and powerful constitutive model for rock-like materials.This study proposes a methodology to calibrate the TSID model parameters to simulate sandstone.The basic parameters of sandstone are determined through a series of static and dynamic tests,including uniaxial compression,Brazilian disc,triaxial compression under varying confining pressures,hydrostatic compression,and dynamic compression and tensile tests with a split Hopkinson pressure bar.Based on the sandstone test results from this study and previous research,a step-by-step procedure for parameter calibration is outlined,which accounts for the categories of the strength surface,equation of state(EOS),strain rate effect,and damage.The calibrated parameters are verified through numerical tests that correspond to the experimental loading conditions.Consistency between numerical results and experimental data indicates the precision and reliability of the calibrated parameters.The methodology presented in this study is scientifically sound,straightforward,and essential for improving the TSID model.Furthermore,it has the potential to contribute to other rock constitutive models,particularly new user-defined models. 展开更多
关键词 Damage constitutive model Parameter calibration Rock modeling SANDSTONE Dynamic impact load Tensile-shear interactive damage(TSID)model
下载PDF
Impact of Weather Conditions and Dynamic Load Models on Steady State and Dynamic Response of Power System
8
作者 Aseem Rambani Mohamad Musavi +3 位作者 Yunhui Wu Shengen Chen Paul Lerley Larry Fish 《Journal of Energy and Power Engineering》 2013年第11期2119-2128,共10页
This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dy... This paper gives an insight on the effect of transmission line temperature variations, resulting from loading and weather conditions changes, on a power system's steady state and dynamic performance. The impact of dynamic load models on system stability is also studied. The steady-state and dynamic stability simulation results of a 39 bus system for constant line impedance (the traditional simulation practice) are compared to the results with estimated, but realistic, temperature varied line impedances using PSLF (positive sequence load flow) software. The modulated line impedances will affect the thermal loading levels and voltage profiles of buses under steady state response, while the dynamic results will show improved damping in electro-mechanical oscillations at generator buses. 展开更多
关键词 Ambient temperature dynamic load modeling line impedance oscillations damping power transmission lines percentage loading PSLF software.
下载PDF
Experimental investigation on single person's jumping load model 被引量:2
9
作者 Chen Jun Wang Haoqi Wang Ling 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第4期703-714,共12页
This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subj... This paper presents a modified half-sine-squared load model of the jumping impulses for a single person. The model is based on a database of 22,921 experimentally measured single jumping load cycles from 100 test subjects. Threedimensional motion capture technology in conjunction with force plates was employed in the experiment to record jumping loads. The variation range and probability distribution of the controlling parameters for the load model such as the impact factor, jumping frequency and contact ratio, are discussed using the experimental data. Correlation relationships between the three parameters are investigated. The contact ratio and jumping frequency are identified as independent model parameters, and an empirical frequency-dependent function is derived for the impact factor. The feasibility of the proposed load model is established by comparing the simulated load curves with measured ones, and by comparing the acceleration responses of a single-degree-of-freedom system to the simulated and measured jumping loads. The results show that a realistic individual jumping load can be generated by the proposed method. This can then be used to assess the dynamic response of assembly structures. 展开更多
关键词 jumping loads three dimensional motion capture technology half-sine-squared model contact ratio impact factor
下载PDF
Multi-objectives nonlinear structure optimization for actuator in trajectory correction fuze subject to high impact loadings 被引量:2
10
作者 Jiang-hai Hui Min Gao +3 位作者 Ming Li Ming-rui Li Hui-hui Zou Gang Zhou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1338-1351,共14页
This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,... This paper presents an actuator used for the trajectory correction fuze,which is subject to high impact loadings during launch.A simulation method is carried out to obtain the peak-peak stress value of each component,from which the ball bearings are possible failures according to the results.Subsequently,three schemes against impact loadings,full-element deep groove ball bearing and integrated raceway,needle roller thrust bearing assembly,and gaskets are utilized for redesigning the actuator to effectively reduce the bearings’stress.However,multi-objectives optimization still needs to be conducted for the gaskets to decrease the stress value further to the yield stress.Four gasket’s structure parameters and three bearings’peak-peak stress are served as the four optimization variables and three objectives,respectively.Optimized Latin hypercube design is used for generating sample points,and Kriging model selected according to estimation result can establish the relationship between the variables and objectives,representing the simulation which is time-consuming.Accordingly,two optimization algorithms work out the Pareto solutions,from which the best solutions are selected,and verified by the simulation to determine the gaskets optimized structure parameters.It can be concluded that the simulation and optimization method based on these components is effective and efficient. 展开更多
关键词 ACTUATOR Trajectory correction fuze impact loadings Optimized Latin hypercube design Kriging model Optimization algorithm
下载PDF
Experimental Investigation into Magnetorheological Damper Subjected to Impact Loads
11
作者 相衡波 方秦 +1 位作者 龚自明 吴昊 《Transactions of Tianjin University》 EI CAS 2008年第B10期540-544,共5页
A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the... A good mechanical model of magnetorheological damper (MRD) is essential to predict the shock isolation performance of MRD in numerical simulation. But at present, the mechanical models of MRD were all derived from the experiment subjected to harmonic vibration loads. In this paper, a commercial MRD (type RD-1005-3) manufactured by Lord Corporation was studied ex-perimentally in order to investigate its isolation performance under the impact loads. A new me-chanical model of MRD was proposed according to the data obtained by impact test. A good agreement between the numerical results and test data was observed, which showed that the model was good to simulate the dynamic properties of MRD under impact loads. It is also demon-strated that MRD can improve the acceleration and displacement response of the structure obvi-ously under impact loads. 展开更多
关键词 magnetorheological damper mechanical model impact loads
下载PDF
A model test system with a dynamic load device for geotechnical engineering in cold regions
12
作者 ShuPing Zhao Wei Ma +1 位作者 GuiDe Jiao Fei Luo 《Research in Cold and Arid Regions》 2012年第2期115-120,共6页
A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load de... A model test system with a dynamic load device for geotechnical engineering in cold regions is presented. This system consists of a model test tank, a refrigeration device and temperature controller, a dynamic load device, together with sensors and data loggers for detecting stress, deformation, and temperature changes. The system can accommodate soil blocks up to 3 m in length, 2.5 m in width, and 1 m in height. The lowest temperature provided by the refrigeration device is -20 ℃. The maximum load provided by the dynamic load device is 100 kN and the vibration fi'equency of the dynamic load can range from 0.1 to 10 Hz. A number of waveforms, such as sine waves, rectangular waves, triangle waves, and other user-defined waves can be generated by the dynamic load device controller. 展开更多
关键词 model test system dynamic load device STRESS DEFORMATION temperature change
下载PDF
Optimal Placement of Multi DG Units Including Different Load Models Using PSO
13
作者 Amany M. El-Zonkol 《Smart Grid and Renewable Energy》 2010年第3期160-171,共12页
This paper proposes a multi-objective index-based approach to optimally determine the size and location of multi-distributed generators (DG) units in distribution system with different load models. It is shown that lo... This paper proposes a multi-objective index-based approach to optimally determine the size and location of multi-distributed generators (DG) units in distribution system with different load models. It is shown that load models can significantly affect the optimal location and sizing of DG resources in distribution systems. The proposed multi-objective function to be optimized includes a short circuit level parameter to represent the protective device requirements. The proposed function also considers a wide range of technical issues such as active and reactive power losses of the system, the voltage profile, the line loading and the MVA intake by the grid. The optimization technique based on particle swarm optimization (PSO) is introduced. The analysis of continuation power flow to determine the effect of DG units on the most sensitive buses to voltage collapse is carried out. The proposed algorithm is tested using the 38-bus radial system and the IEEE 30-bus meshed system. The results show the effectiveness of the proposed algorithm. 展开更多
关键词 Particle SWARM Optimization (PSO) Optimal PLACEMENT Distributed Generation (DG) load models impact Indices SHORT Circuit Level Voltage Stability
下载PDF
Double⁃Shear Experiments of Cold⁃Formed Steel Stud⁃to⁃Sheathing Connections at Elevated Temperatures
14
作者 Kun Liu Wei Chen +3 位作者 Jihong Ye Yuze Yang Jian Jiang Yafei Qin 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第6期44-62,共19页
The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds o... The behavior of cold⁃formed steel(CFS)stud⁃to⁃sheathing connections at elevated temperatures is an important parameter for the fire resistance design and modeling of mid⁃rise CFS structures.In this paper,three kinds of sheathings,namely,medium⁃and low⁃density calcium⁃silicate boards and oriented strand board,were selected for double⁃shear experiments on the mechanical properties of 253 screw connections at ambient and elevated temperatures.The effects of the shear direction,screw edge distance and the number of screws on the behavior of the connections were studied.The results showed that the shear direction and the screw edge distance more significantly influenced the peak deformation,while their impacts on the peak load varied with the type of sheathings.Compared with the single⁃screw connections,the peak loads of the specimens with double⁃screw connections obviously increased but did not double.Finally,a simplified load⁃displacement curve model of stud⁃to⁃sheathing connections at elevated temperature was generated first by establishing the prediction formula for characteristic parameters,such as the peak load,the peak deformation and the elastic stiffness,and then by considering whether the curves corresponded to stiffness increase phenomena.The present investigation provides basic data for future studies on the numerical modeling of CFS structures under fire conditions. 展开更多
关键词 cold⁃formed steel structures stud⁃to⁃sheathing screw connections double⁃shear experiments elevated temperature load⁃displacement model
下载PDF
汽车涂层样本单颗粒冲击破坏仿真分析 被引量:1
15
作者 杨红 陈力 +1 位作者 邹晨祺 臧孟炎 《汽车工程学报》 2024年第1期116-124,共9页
研究汽车涂层在冲击载荷下的破坏现象,对于预测涂层抗石击性能以及指导涂层结构设计和优化具有重要意义。建立了汽车涂层样本单颗粒冲击破坏有限元模型,使用自主开发的显式有限元求解器模拟汽车涂层冲击破坏过程。涂层层内破坏、基底与... 研究汽车涂层在冲击载荷下的破坏现象,对于预测涂层抗石击性能以及指导涂层结构设计和优化具有重要意义。建立了汽车涂层样本单颗粒冲击破坏有限元模型,使用自主开发的显式有限元求解器模拟汽车涂层冲击破坏过程。涂层层内破坏、基底与涂层界面分离破坏模式的仿真结果与试验结果的良好一致性,验证了仿真分析方法的有效性,揭示了涂层在冲击载荷下的层内破坏与界面分离破坏的失效机理。 展开更多
关键词 汽车涂层 冲击载荷 损伤模型 数值模拟
下载PDF
基于温升特性的强迫导向油循环风冷结构变压器负荷能力评估 被引量:1
16
作者 刘刚 兰和潼 +2 位作者 姜雄伟 刘云鹏 王文浩 《高电压技术》 EI CAS CSCD 北大核心 2024年第1期232-241,I0019,共11页
针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建... 针对强迫导向油循环风冷(oir directrd air forced,ODAF)结构变压器负荷能力受温升约束影响的问题,提出了3种负荷类型情况下变压器负荷能力评估方法。首先,考虑风扇与油泵的运行状态以及油粘度变化对热阻的影响等因素,基于热电类比法建立了变压器热路模型,以计算绕组热点与顶部油温度;其次,采用粒子群优化(particle swarm optimization,PSO)算法拟合热路模型参数,并基于2台不同型号变压器的运行数据,对热路模型的计算精度与拟合参数适用性进行有效性验证;最后,参考GB/T1094.7负载导则给出的温升限值,基于温升特性提出了负荷能力评估模型。分析结果表明,该研究所提热路模型计算热点温度的误差不大于2.35℃,在工程允许范围内;正常周期性负荷下当环境温度低于1℃时,关闭1组子散热器后仍满足温升约束。 展开更多
关键词 负荷能力 ODAF冷却方式 变压器 温升特性 热路模型
下载PDF
冲击载荷下含腐蚀缺陷的海底管道损伤分析
17
作者 任涛 郑吉霖 +1 位作者 曾威 刘强 《石油机械》 北大核心 2024年第9期67-73,共7页
针对海底油气管道因冲击和腐蚀易造成管道损伤破坏的问题,基于耦合欧拉-拉格朗日算法(CEL)建立坠物-腐蚀管道-海床土体冲击有限元模型,分析了坠物质量、速度、埋深和腐蚀深度对含腐蚀缺陷管道损伤的影响,并与未腐蚀的完整管道进行了对... 针对海底油气管道因冲击和腐蚀易造成管道损伤破坏的问题,基于耦合欧拉-拉格朗日算法(CEL)建立坠物-腐蚀管道-海床土体冲击有限元模型,分析了坠物质量、速度、埋深和腐蚀深度对含腐蚀缺陷管道损伤的影响,并与未腐蚀的完整管道进行了对比。以此为基础,分析了内压和腐蚀深度对撞击后的腐蚀管道应力的影响规律。研究结果表明:含腐蚀缺陷管道受冲击损伤程度均大于完整管道,同等撞击速度、质量和埋深下,冲击损伤值最大分别相差68.6%、14.3%和194.7%;撞击后的腐蚀管道和完整管道最大等效应力均随内压增加而增大,同等内压等效应力值最大相差50.4%;同等腐蚀深度下,未撞击腐蚀管道和撞击后腐蚀管道等效应力值最大相差11.7%。这表明海底油气管道冲击损伤分析应考虑腐蚀缺陷的影响。研究方法及结果可为海底油气管道冲击损伤分析与评价提供参考。 展开更多
关键词 海底管道 腐蚀管道 冲击载荷 冲击损伤 管道损伤 有限元模型
下载PDF
桩顶荷载及温度循环对黄土地基中能量桩承载性状影响研究
18
作者 曹卫平 张作鹏 +2 位作者 赵敏 李清源 何展朋 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第8期165-172,共8页
为对比分析未经过温度循环的普通桩与能量桩竖向承载变形性状,开展黄土地基中能量桩温度循环试验。模型桩为现浇钢筋混凝土灌注桩,黄土为人工配制重塑黄土。研究结果表明:温度循环弱化黄土地基中能量桩桩身侧阻、增强能量桩桩底端阻,温... 为对比分析未经过温度循环的普通桩与能量桩竖向承载变形性状,开展黄土地基中能量桩温度循环试验。模型桩为现浇钢筋混凝土灌注桩,黄土为人工配制重塑黄土。研究结果表明:温度循环弱化黄土地基中能量桩桩身侧阻、增强能量桩桩底端阻,温度循环过程中桩顶工作荷载越大,桩侧阻的弱化作用及桩端阻的增强作用越大,这导致能量桩的竖向抗压承载力比普通桩有明显的提高。另外,根据模型试验结果,通过数据拟合建立桩土界面摩阻力-桩土相对位移及桩端土反力-桩端沉降双曲线函数模型,并确定模型参数,其函数计算结果与试验结果对比表明本文模型能合理反映温度循环及桩顶工作荷载大小对桩基承载力的影响。研究结果可为黄土地区能量桩的安全设计提供一定参考。 展开更多
关键词 能量桩 黄土 模型试验 温度循环 桩土荷载传递函数
下载PDF
考虑空气源热泵负荷聚合参与的需求响应
19
作者 梁海平 谢鑫 李世航 《太阳能学报》 EI CAS CSCD 北大核心 2024年第8期273-280,共8页
基于“电网-聚合商-负荷”三级架构,提出空气源热泵负荷聚合参与需求响应的控制策略。供暖运营商作为热泵负荷的聚合商,在保证用户热舒适度的基础上,利用建筑本身的蓄能能力,结合分时电价最小化供热成本,并对负荷可调节潜力进行评估。... 基于“电网-聚合商-负荷”三级架构,提出空气源热泵负荷聚合参与需求响应的控制策略。供暖运营商作为热泵负荷的聚合商,在保证用户热舒适度的基础上,利用建筑本身的蓄能能力,结合分时电价最小化供热成本,并对负荷可调节潜力进行评估。当电网调度部门下发调控指令后,考虑用户舒适度和电网调节需求,基于多目标遗传算法分配各负荷调节量,在满足调控目标的同时可改善调控带来的聚合功率振荡、反弹负荷大等问题。最后,仿真验证所提策略的有效性。 展开更多
关键词 空气源热泵 需求响应 温控负荷 模型预测控制 聚合调控 负荷恢复
下载PDF
基于冲击的涡扇发动机退化建模与下发预测
20
作者 赵洪利 王之强 张青 《机床与液压》 北大核心 2024年第1期210-216,共7页
为解决多性能参数模型无法描述不同起飞推力下发动机性能退化的问题,利用单性能参数结合极端冲击模型描述起飞时发动机全功率运转对热端部件的热冲击影响,利用线性退化模型描述发动机自然退化过程,建立发动机性能可靠度退化模型。利用V2... 为解决多性能参数模型无法描述不同起飞推力下发动机性能退化的问题,利用单性能参数结合极端冲击模型描述起飞时发动机全功率运转对热端部件的热冲击影响,利用线性退化模型描述发动机自然退化过程,建立发动机性能可靠度退化模型。利用V2500发动机全寿命EGTM数据,结合最大似然估计给出性能可靠度表达式与模型参数,最后利用机队中同型V2500发动机非完整EGTM数据验证模型,预测下发时间,结果表明此模型预测下发时间和实际下发时间的误差小于3%,证明了模型的有效性。 展开更多
关键词 单性能参数 涡扇发动机 冲击模型 EGTM 性能可靠度 性能退化
下载PDF
上一页 1 2 26 下一页 到第
使用帮助 返回顶部