With the development of offshore engineering, deeply embedded anchors are needed to be penetrated to appreciable depth and attached at the pad-eye. The interaction between anchor chain and soil is a very complex proce...With the development of offshore engineering, deeply embedded anchors are needed to be penetrated to appreciable depth and attached at the pad-eye. The interaction between anchor chain and soil is a very complex process and has not been thoroughly understood yet. In this paper, the finite element method (FEM) was used to study the interaction of soil-chain system. Results of the analysis show that when the attachment point is at a shallow depth, the load-development characteristics of the chain from FEM are in good agreement with that from the model tests and theoretical analysis. But with the depth increment, the results are different obviously in different methods. This phenomenon is resulted from a variety of reasons, and the plastic zone around the chain was studied to try finding the mechanism behind it. It could be seen that the plastic zone extended in different modes at different depths of attachment points. The interaction between the soil and anchor chain makes the load acting on the anchor decrease, but the soil disturbed surrounding the chain increases the anchor failure possibility. When the anchor bearing capacity is evaluated, these two factors should be considered properly at the same time.展开更多
基金supported by the State Key Program of National Natural Science of China(Grant No.51239008)
文摘With the development of offshore engineering, deeply embedded anchors are needed to be penetrated to appreciable depth and attached at the pad-eye. The interaction between anchor chain and soil is a very complex process and has not been thoroughly understood yet. In this paper, the finite element method (FEM) was used to study the interaction of soil-chain system. Results of the analysis show that when the attachment point is at a shallow depth, the load-development characteristics of the chain from FEM are in good agreement with that from the model tests and theoretical analysis. But with the depth increment, the results are different obviously in different methods. This phenomenon is resulted from a variety of reasons, and the plastic zone around the chain was studied to try finding the mechanism behind it. It could be seen that the plastic zone extended in different modes at different depths of attachment points. The interaction between the soil and anchor chain makes the load acting on the anchor decrease, but the soil disturbed surrounding the chain increases the anchor failure possibility. When the anchor bearing capacity is evaluated, these two factors should be considered properly at the same time.