期刊文献+
共找到543篇文章
< 1 2 28 >
每页显示 20 50 100
Nonlinear analysis of pile load-settlement behavior in layered soil
1
作者 吕述晖 王奎华 +1 位作者 张鹏 C.J.LEO 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3615-3623,共9页
A simplified approach is presented to analyze the single pile settlement in multilayered soil. First, a fictitious soil-pile model is employed to consider the effect of layered soil beneath pile toe on pile settlement... A simplified approach is presented to analyze the single pile settlement in multilayered soil. First, a fictitious soil-pile model is employed to consider the effect of layered soil beneath pile toe on pile settlement behavior. Two approximation methods are proposed to simplify the nonlinear load transfer function and simulate the nonlinear compression of fictitious soil-pile, respectively. On this basis, an efficient program is developed. The procedures for determining the main parameters of mathematical model are discussed. Comparisons with two well-documented field experimental pile loading tests are conducted to verify the rationality of the present method. Further studies are also made to evaluate the practicability of the proposed approach when a soft substratum exists, and the results suggest that the proposed method can provide a constructive means for assessing the settlement of a single pile for use in engineering design. 展开更多
关键词 pile load-settlement behavior fictitious soil-pile layered soil soft substratum SEDIMENT
下载PDF
Bearing behavior and failure mechanism of squeezed branch piles 被引量:12
2
作者 Minxia Zhang Ping Xu +1 位作者 Wenjie Cui Youbin Gao 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期935-946,共12页
The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure ... The current practice for the design of squeezed branch piles is mainly based on the calculated bearing capacity of circular piles. Insufficient considerations of the load-transfer mechanism, branch effect and failure mechanism, as well as overreliance on pile load tests, have led to conservative designs and limited application. This study performs full-scale field load tests on instrumented squeezed branch piles and shows that the shaft force curves have obvious drop steps at the branch position, indicating that the branches can effectively share the pile top load. The effects of branch position, spacing, number and diameter on the pile bearing capacity are analyzed numerically. The numerical results indicate that the squeezed branch piles have two types of failure mechanisms, i.e. individual branch failure mechanism and cylindrical failure mechanism. Further research should focus on the development of the calculation method to determine the bearing capacities of squeezed branch piles considering these two failure mechanisms. 展开更多
关键词 Squeezed branch piles Field test Bearing behavior Failure mechanism Numerical simulation
下载PDF
Centrifuge modeling of dynamic behavior of pile-reinforced slopes during earthquakes 被引量:4
3
作者 于玉贞 邓丽军 +1 位作者 孙逊 吕禾 《Journal of Central South University》 SCIE EI CAS 2010年第5期1070-1078,共9页
A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pre... A series of centrifuge model tests of sandy slopes were conducted to study the dynamic behavior of pile-reinforced slopes subjected to various motions.Time histories of accelerations,bending moments and pile earth pressures were obtained during excitation of the adjusted El Centro earthquake and a cyclic motion.Under a realistic earthquake,the overall response of the pile-reinforced slope is lower than that of the non-reinforced slope.The histories of bending moments and dynamic earth pressures reach their maximums soon after shaking started and then remain roughly stable until the end of shaking.Maximum moments occur at the height of 3.5 m,which is the deeper section of the pile,indicating the interface between the active loading and passive resistance regions.The dynamic earth pressures above the slope base steadily increase with the increase of height of pile.For the model under cyclic input motion,response amplitudes at different locations in the slope are almost the same,indicating no significant response amplification.Both the bending moment and earth pressure increase gradually over a long period. 展开更多
关键词 EARTHQUAKE SLOPE stabilizing pile dynamic behavior centrifuge modeling earth pressure ACCELERATION bending moment
下载PDF
Study of seismic behavior of PHC piles with partial normal-strength deformed bars 被引量:3
4
作者 Zhang Xizhi Zhang Shaohua +1 位作者 Xu Shengbo Niu Sixin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第2期307-320,共14页
Nine PHC piles with partial normal-strength deformed bars were prepared in present study,and cyclic loading tests were implemented to evaluate these piles’seismic performance.The influence of the axial compression ra... Nine PHC piles with partial normal-strength deformed bars were prepared in present study,and cyclic loading tests were implemented to evaluate these piles’seismic performance.The influence of the axial compression ratio and the amount of normal-strength deformed bars on failure modes,crack patterns,strength,stiffness,and ductility were examined.The test findings indicate that the change of axial compression ratio has a noticeable influence on the failure mode of PHC piles.A larger axial compression ratio results in a higher cracking bending resistance,ultimate bending resistance,and initial stiffness,but the propagation heights of flexural cracks decrease as the axial compression ratio increases.Furthermore,increasing the amount of normal-strength deformed bars causes a slight decrease in ductility.Finally,a calculation formula was proposed to predict the flexural capacity of PHC piles with partial normal-strength deformed bars. 展开更多
关键词 PHC pile PRESTRESSED TENDONS DEFORMED bars seismic behavior cyclic loading test FLEXURAL capacity
下载PDF
Experimental investigation on seismic behavior of single piles in sandy soil 被引量:1
5
作者 Werasak Raongjant 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2011年第3期417-422,共6页
This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccen... This paper describes a quasi-static test program featuring lateral cyclic loading on single piles in sandy soil. The tests were conducted on 18 aluminum model piles with different cross sections and lateral load eccentricity ratios, e/d, (e is the lateral load eccentricity and d is the diameter of pile) of 0, 4 and 8, embedded in sand with a relative density of 30% and 70%. The experimental results include lateral load-displacement hysteresis loops, skeleton curves and energy dissipation curves. Lateral capacity, ductility and energy dissipation capacity of single piles under seismic load were evaluated in detail. The lateral capacities and the energy dissipation capacity of piles in dense sand were much higher than in loose sand. When embedded in loose sand, the maximum lateral load and the maximum lateral displacement of piles increased as e/d increased. On the contrary, when embedded in dense sand, the maximum lateral load of piles decreased as e/d increased. Piles with a higher load eccentricity ratio experienced higher energy dissipation capacity than piles with e/d of 0 in both dense and loose sand. At a given level of displacement, piles with circular cross sections provided the best energy dissipation capacity in both loose and dense sand. 展开更多
关键词 seismic behavior single pile sandy soil load eccentricity ratio lateral resistance
下载PDF
Mechanical Behaviors and Deformation Properties of Retaining Wall Formed by Grouting Mould-Bag Pile 被引量:1
6
作者 Shengcai Li Jun Tang Lin Guo 《Structural Durability & Health Monitoring》 EI 2019年第1期61-84,共24页
The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displ... The simplified mechanical model and finite element model are established on the basis of the measured results and analysis of the grouting pile deformation monitoring,surface horizontal displacement and vertical displacement monitoring,deep horizontal displacement(inclinometer)monitoring,soil pressure monitoring and seepage pressure monitoring in the lower reaches of Wuan River regulation project in Shishi,Fujian Province.The mechanical behavior and deformation performance of mould-bag pile retaining wall formed after controlled cement grouting in the silty stratum of the test section are analyzed and compared.The results show that the use of controlled cement grouting mould-bag pile technology is to strengthen the soft stratum for sealing water and reinforcement,so that it can rock into a retaining wall,which can both retain soil and seal water with excellent effect.The control of cement grouting technology not only makes the soft soil rock in the range of retaining wall of mould-bag pile,but also makes a wide range of soil around the mould-bag pile squeeze and embed to compaction;and its cohesion and internal friction angle increased,so as to achieve the purpose of reducing soil pressure and improving mechanical and deformation properties of retaining wall. 展开更多
关键词 Controlled cement grouting technology grouting mould-bag pile retaining wall mechanical behaviors deformation properties
下载PDF
ON THE DRIVING BEHAVIOR,VARIABLE-DIAMETEREFFECT AND BEAKING CAPACITY OF DRIVENCAST-IN-SITU PILE WITHFLAT
7
作者 Shi Peidong , Fu Zhenqiu , Zhan Xiaoying Zhejing Academy of Building Research, Hangzhou 3100l2, China Zia Jinzhang Tongji University, Shanghai 200092 , China 《西部探矿工程》 CAS 1995年第5期66-71,共6页
ONTHEDRIVINGBEHAVIOR,VARIABLE-DIAMETEREFFECTANDBEAKINGCAPACITYOFDKIVENCAST-IN-SITUPILEWITHFLATOVERSIZETIPShi... ONTHEDRIVINGBEHAVIOR,VARIABLE-DIAMETEREFFECTANDBEAKINGCAPACITYOFDKIVENCAST-IN-SITUPILEWITHFLATOVERSIZETIPShiPeidong,FuZhenqiu... 展开更多
关键词 pile TIP flat oversize TIP DRIVEN CAST-IN-SITU pile driving behavior variable-diameter effect bear-ing capacity settlensent
下载PDF
Bearing Behavior of Cast-in-Place Expansive Concrete Pile in Coral Sand Under Vertical Loading
8
作者 DING Xuan-ming DENG Wei-ting +2 位作者 PENG Yu ZHOU Hang WANG Chun-yan 《China Ocean Engineering》 SCIE EI CSCD 2021年第3期352-360,共9页
The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both ... The low side friction of piles in coral sand results in the low bearing capacity of foundations.In this paper,expansive concrete pile is utilized to improve the bearing capacity of pile foundations in coral sand.Both model tests and numerical simulation are performed to reveal the bearing mechanism of expansive concrete pile in coral sand.Results showed that the lateral earth pressure near pile increases obviously and the side friction of piles is improved,after adding expansion agent to the concrete.The horizontal linear expansion is 1.11%and the bearing capacity increased 41%for the pile,when 25%expansion agent is added.Results in finite element numerical simulation also show that ultimate bearing capacity increases with the increase of the linear expansion ratio.Besides,the area for obvious increase in side friction is below the surface of soil about three times the pile diameter,and the expansion leads to a high side friction sharing of the pile.Therefore,the cast-in-place expansive concrete pile is effective in improving the bearing capacity of piles in coral sand. 展开更多
关键词 bearing behavior expansive concrete pile coral sand side friction numerical simulation
下载PDF
Interface Mechanical Behavior of Flexible Piles Under Lateral Loads in OWT Systems
9
作者 LI Xiao-juan ZHU Ming-xing +2 位作者 DAI Guo-liang WANG Li-yan LIU Jing 《China Ocean Engineering》 SCIE EI CSCD 2023年第3期484-494,共11页
This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model ... This paper investigates the interface mechanical behavior of flexible piles with L_p/D>10 under lateral load and an overturning moment in monotonic loading conditions.To modify the beam-on-Winkler-foundation model of piles in offshore wind farms,the energy-based variational method is used.The soil is treated as a multi-layered elastic continuum with the assumption of three-dimensional displacements,the pile modeled as an Euler-Bernoulli beam.A series of cases using MATLAB programming was conducted to investigate the simplified equations of initial stiffness.The results indicated that the interaction between soil layers and the applied force position should be taken into account in calculating the horizontal soil resistance.Additionally,the distributed moment had a limiting effect on the lateral capacity of a flexible pile.Moreover,to account for the more realistic conditions of OWT systems,field data from the Donghai Bridge offshore wind farm were used. 展开更多
关键词 flexible piles interface mechanical behavior initial stiffness p-y curves offshore wind turbine systems
下载PDF
Effect of a filter cake on shear behavior of sand-concrete pile interface
10
作者 CHEN Chen LENG Wu-ming +3 位作者 YANG Qi DONG Jun-li XU Fang RUAN Bo 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第6期2019-2032,共14页
A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cak... A filter cake is often formed between soil and concrete during casting concrete in the ground,such as constructions of diaphragm walls and bored piles.The present study aims to investigate the effect of the filter cake on the shear behavior of the sand-concrete pile interface.A series of sand-concrete interface direct shear tests were performed with a large-direct shear apparatus while considering different roughness(I=0,10,20 and 30 mm)and filter cake thickness(Δh=0,5 and 10 mm).For a smooth interface without a filter cake,the shear stress-horizontal displacement curves showed a“softening”response.The peak shear strength and friction angle decreased exponentially with increasing theΔh.Whereas,for a rough interface withΔh=5 or 10 mm,the shear stress-horizontal displacement curves presented a“hardening”response.The peak strength,as well as friction angle,decreased linearly with increasing theΔh.Moreover,a critical roughness I_(cr)of 10 mm was observed in the tests without a filter cake.The interface shear strength initially increased with increasing I but gradually decreased when the I exceeded I_(cr).In addition,the filter cake could reduce the roughness sensitivity on shear strength. 展开更多
关键词 filter cake sand-concrete pile interface large scale direct shear test shear behavior critical roughness
下载PDF
Flexural Behavior of Laterally Loaded Tapered Piles in Cohesive Soils
11
作者 Musab Aied Qissab 《Open Journal of Civil Engineering》 2015年第1期29-38,共10页
In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elas... In this paper, the flexural behavior of laterally loaded tapered piles in cohesive soils is investigated. The exact solution for the governing differential equation of the problem is obtained based on the beam-on-elastic foundation approach in which the soil reaction on the pile is related directly to the pile lateral deflection. In this investigation, the modulus of subgrade reactions is assumed to be constant along the pile depth. Parametric study through numerical examples is carried out to prove the validity and accuracy of the obtained results. In general, the derived displacement field can be used to study pile response in multilayered soil profiles by subdividing the pile into a number of elements. It is found that tapered piles show stiffer behavior than that for prismatic ones having the same material volume with an optimum stress distribution along the pile depth. Accordingly, tapered piles are more efficient and economic than those having the same material volume. Verification is also carried out for the obtained results through finite element analysis and the selected number of elements gives a very good agreement for lateral deflection and a larger number of elements is required to obtain better results for bending moment because of moment loss resulting from the lack of shear diagram. 展开更多
关键词 COHESIVE SOILS FLEXURAL behavior LATERAL Load SUBGRADE Reaction Tapered pileS
下载PDF
Centrifuge modeling of unreinforced and multi-row stabilizing piles reinforced landslides subjected to reservoir water level fluctuation
12
作者 Chenyang Zhang Yueping Yin +3 位作者 Hui Yan Sainan Zhu Ming Zhang Luqi Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1600-1614,共15页
With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides... With the construction of the Three Gorges Reservoir dam,frequent reservoir landslide events have been recorded.In recent years,multi-row stabilizing piles(MRSPs)have been used to stabilize massive reservoir landslides in China.In this study,two centrifuge model tests were carried out to study the unreinforced and MRSP-reinforced slopes subjected to reservoir water level(RWL)operation,using the Taping landslide as a prototype.The results indicate that the RWL rising can provide lateral support within the submerged zone and then produce the inward seepage force,eventually strengthening the slope stability.However,a rapid RWL drawdown may induce outward seepage forces and a sudden debuttressing effect,consequently reducing the effective soil normal stress and triggering partial pre-failure within the RWL fluctuation zone.Furthermore,partial deformation and subsequent soil structure damage generate excess pore water pressures,ultimately leading to the overall failure of the reservoir landslide.This study also reveals that a rapid increase in the downslope driving force due to RWL drawdown significantly intensifies the lateral earth pressures exerted on the MRSPs.Conversely,the MRSPs possess a considerable reinforcement effect on the reservoir landslide,transforming the overall failure into a partial deformation and failure situated above and in front of the MRSPs.The mechanical transfer behavior observed in the MRSPs demonstrates a progressive alteration in relation to RWL fluctuations.As the RWL rises,the mechanical states among MRSPs exhibit a growing imbalance.The shear force transfer factor(i.e.the ratio of shear forces on pile of the n th row to that of the first row)increases significantly with the RWL drawdown.This indicates that the mechanical states among MRSPs tend toward an enhanced equilibrium.The insights gained from this study contribute to a more comprehensive understanding of the failure mechanisms of reservoir landslides and the mechanical behavior of MRSPs in reservoir banks. 展开更多
关键词 Reservoir landslide Failure mechanism Multi-row stabilizing piles Mechanical behavior
下载PDF
DYNAMIC BEHAVIOR OF PILES EMBEDDED IN TRANSVERSELY ISOTROPIC LAYERED MEDIA
13
作者 郑铁生 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第3期241-252,共12页
Dynamic behavior of single pile embedded in transversely isotropic layered media is investigated using the finite element method combined with dynamic stiffness matrices of the soil derived from Green's function f... Dynamic behavior of single pile embedded in transversely isotropic layered media is investigated using the finite element method combined with dynamic stiffness matrices of the soil derived from Green's function for ring loads. The influence of soil anisotropy on the dynamic behavior of piles is examined through a series of parametric studies. 展开更多
关键词 pile-soil system soil anisotropy transversely isotropic layered media dynamic behavior finite element method
下载PDF
Pile-up现象对材料本构关系反演计算的影响 被引量:3
14
作者 王月敏 闫相桥 李垚 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2018年第5期825-830,共6页
针对商用纳米压痕测试中忽略凸起(Pile-up)现象的问题,开展了Pile-up现象对材料力学参数和本构反演计算结果影响的研究。推导能量法理论,选取5种不同材料进行了纳米压痕测试,利用商用Oliver-Pharr(O-P)法和能量法分别进行硬度和弹性模... 针对商用纳米压痕测试中忽略凸起(Pile-up)现象的问题,开展了Pile-up现象对材料力学参数和本构反演计算结果影响的研究。推导能量法理论,选取5种不同材料进行了纳米压痕测试,利用商用Oliver-Pharr(O-P)法和能量法分别进行硬度和弹性模量计算,并比较测试误差率。推导极限分析法理论并进行反演计算,得到考虑材料Pile-up现象的应力应变曲线,并根据计算结果对纳米压痕过程进行仿真。结果表明:当纳米压痕测试中压痕残余深度与压入深度比值大于0.7时,Pile-up现象对商用O-P法测试影响明显,弹性模量和硬度值误差率达到20%以上;对发生塑性变形较大材料进行本构关系反演计算时,理论计算值和数值模拟结果均证明了Pile-up现象对应力应变曲线计算有一定的影响。研究结果可为纳米压痕测试本构关系的反演计算方法提供参考。 展开更多
关键词 能量法 纳米压痕测试 极限分析法 pile-up现象 反演分析 本构关系 有限元分析 量纲分析
下载PDF
Response of a pile group behind quay wall to liquefaction-induced lateral spreading:a shake-table investigation 被引量:6
15
作者 Tang Liang Zhang Xiaoyu +2 位作者 Ling Xianzhang Su Lei Liu Chunhui 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第4期741-749,共9页
The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-p... The response of pile foundations near a quay wall under liquefaction-induced lateral spreading remains a complex problem. This study presents the results of a shake-table test on a 2×2 pile group behind a sheet-pile quay wall that was subjected to lateral spreading. The quay wall was employed to trigger liquefaction-induced large lateral ground deformation. The discussions focus on the behavior of the pile and the soil and on the bending moment distributions within the group pile and the restoring force characteristics at the superstructure. Overall, the piles exhibited apparent pinning effects that reduced soil deformation. In addition, the rear-row piles near the quay wall experienced larger bending moments than did the front-row piles, indicating significant pile group effects. The tests showed that lateral spreading could be a primary cause of larger monotonic deformations and bending moments. It can also be concluded that the monotonic bending moments were significantly decreased due to the presence of slow soil flow. The stiffness at the superstructure was reduced because of accumulated excess pore pressure before liquefaction, and it was recovered during lateral spreading. The present study further enhances current understanding of the behavior of low-cap pile foundations under lateral spreading. 展开更多
关键词 lateral spreading LIQUEFACTION pile group behavior shake-table experiment
下载PDF
Experimental and numerical investigation on the dynamic response of pile group in liquefying ground 被引量:6
16
作者 Tang Liang Zhang Xiaoyu +2 位作者 Ling Xianzhang Li Hui Ju Nengpan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第1期103-114,共12页
The response of pile foundation in liquefable sand reinforced by densification techniques remains a very complex problem during strong earthquakes. A shake-table experiment was carried out to investigate the behavior ... The response of pile foundation in liquefable sand reinforced by densification techniques remains a very complex problem during strong earthquakes. A shake-table experiment was carried out to investigate the behavior of a reinforced concrete low-cap pile group embedded in this type of ground. In this study, a three-dimensional (3D) finite element (FE) analysis of the experiment was conducted. The computed response of the soil-pile system was in reasonable agreement with the experimental results, highlighting some key characteristics. Then, a parametric study was performed to explore the influence of pile spacing, pile stiffness (E/), superstructure mass, sand permeability, and shaking characteristics of input motion on the behavior of the pile. The investigation demonstrated a stiffening behavior appearing in the liquefied medium- dense sand, and the pile group effect seemed negligible. Furthermore, the kinematic effect was closely connected with both EI and sand permeability. Nevertheless, the inertial effect was strongly influenced by the superstructure mass. Meanwhile, high frequency and large amplitude of the input motion could produced greater the pile's moments. It is estimated that this case study could further enhance the current understanding of the behavior of low-cap pile foundations in liquefied dense sand. 展开更多
关键词 LIQUEFACTION seismic behavior lowcap pile group finite element analysis shaketable experiment
下载PDF
Seasonally frozen soil effects on the dynamic behavior of highway bridges 被引量:1
17
作者 ZhaoHui "Joey" Yang Qiang Li +1 位作者 Elmer E. Marx JinChi Lu 《Research in Cold and Arid Regions》 2012年第1期13-20,共8页
Frozen ground is significantly stiffer than unfrozen ground. For bridges supported on deep foundations, bridge stiffness is also measurably higher in winter months. Significant changes due to seasonal freezing in brid... Frozen ground is significantly stiffer than unfrozen ground. For bridges supported on deep foundations, bridge stiffness is also measurably higher in winter months. Significant changes due to seasonal freezing in bridge pier boundary conditions require addi- tional detailing in order to ensure a ductile performance of the bridge during a design earthquake event. This paper reports the lat- est results obtained from a project that systematically investigated the effects of seasonally frozen soil on the seismic behavior of highway bridges in cold regions. A bridge was chosen and was monitored to study its seismic performance and assess the impact of seasonally frozen soil on its dynamic properties. A Finite Element (FE) model was created for this bridge to analyze the impact of seasonal frost. It was found that when frost depth reaches 1.2 m, the first transverse modal frequency increases about 200% when compared with the no-frost case. The results show that seasonal frost has a significant impact on the overall dynamic be- havior of bridges supported by pile foundations in cold regions, and that these effects should be accounted for in seismic design. 展开更多
关键词 dynamic behavior seasonally frozen soil pile foundation EARTHQUAKE Finite Element modeling
下载PDF
Corrosion behaviors of arc spraying single and double layer coatings in simulated Dagang soil solution 被引量:3
18
作者 林碧兰 路新瀛 李龙 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第6期1556-1561,共6页
Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to ... Three kinds of single layer coatings of Zn,Zn15Al,316L stainless steel and two kinds of double layer coatings with inner layer of Zn or Zn15Al and outer layer of 316L stainless steel by arc spraying were developed to protect the metal ends of prestressed high-strength concrete(PHC)pipe piles against soil corrosion.The corrosion behaviors of the coated Q235 steel samples in the simulated Dagang soil solution were investigated by potentiodynamic polarization,electrochemical impedance spectroscopy(EIS) and natural immersion tests.The results show that the corrosion of the matrix Q235 steel is effectively inhibited by Zn,Zn15Al, Zn+316L and Zn15Al+316L coatings.The corrosion rate value of Zn15Al coated samples is negative.The corrosion products on Zn and Zn15Al coated samples are compact and firm.The corrosion resistance indexes of both Zn and Zn15Al coated samples are improved significantly with corrosion time,and the latter are more outstanding than the former.But the corrosion resistance of 316L coated samples is decreased quickly with the increase in immersion time.When the coatings are sealed with epoxy resin,the corrosion resistance of the coatings will be enhanced significantly. 展开更多
关键词 双层涂层 腐蚀行为 电弧喷涂 土壤溶液 316L不锈钢 模拟 Q235钢 电化学阻抗谱
下载PDF
Simulation analysis for O-cell test of pile and the interaction of upper pile and lower pile
19
作者 郑英杰 张克绪 张尔其 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第4期541-547,共7页
In this paper,the soil-pile system of O-cell test of pile is simplified as an axi-symmetric problem.By using aggregation of quadrilateral isoparametric elements to simulate pile and soil,setting Goodman's elements... In this paper,the soil-pile system of O-cell test of pile is simplified as an axi-symmetric problem.By using aggregation of quadrilateral isoparametric elements to simulate pile and soil,setting Goodman's elements between pile and soils,a method of numerical simulation analysis on O-cell test of pile is presented with the consideration of nonlinear mechanical behavior of soils and pile-soil interface.The method is applied to the analysis of a case of O-cell test of pile.The load-displacement curves and axial force curves of upper pile and lower pile obtained from the O-cell test of pile are fitted,and parameters of the mechanical model of soils and interface are determined.Analysis results validate that the numerical simulation analysis method put forward in this paper is applicable.Furthermore,the interaction and influence of upper pile and lower pile in the O-cell test are also studied with the method.The result shows that if load box is located in a soil layer with fine mechanical behavior,the interaction of upper pile and lower pile in O-cell test can be ignored generally. 展开更多
关键词 O-cell test of pile simulation analysis nonlinear behavior p-s curve interaction
下载PDF
A Simplified Method for Estimating the Initial Stiffness of Monopile-Soil Interaction Under Lateral Loads in Offshore Wind Turbine Systems
20
作者 LI Xiao-juan DAI Guo-liang +2 位作者 ZHU Ming-xing WANG Li-yan LIU Hong-yuan 《China Ocean Engineering》 SCIE EI CSCD 2023年第1期165-174,共10页
The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stif... The interface mechanical behavior of a monopile is an important component of the overall offshore wind turbine structure design.Understanding the soil-structure interaction,particularly the initial soil-structure stiffness,has a significant impact on the study of natural frequency and dynamic response of the monopile.In this paper,a simplified method for estimating the interface mechanical behavior of monopiles under initial lateral loads is proposed.Depending on the principle of minimum potential energy and virtual work theory,the functions of soil reaction components at the interface of monopiles are derived;MATLAB programming has been used to simplify the functions of the initial stiffness by fitting a large number of examples;then the functions are validated against the field test data and FDM results.This method can modify the modulus of the subgrade reaction in the p-y curve method for the monopile-supported offshore wind turbine system. 展开更多
关键词 theoretical analysis pile−soil interaction interface mechanical behavior offshore wind turbine systems
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部