Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design redu...Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design reduces the inertia of the elbow-driving unit and the torque by 76.65%and 57.81%,respectively.Mimicking the human pose regulation strategy that the human arm picks up a heavy object by adjusting its posture naturally without complicated control,the robotic arm features an integrated position-level closed-form inverse solution method considering both geometric and load capacity limitations.This method consists of a geometric constraint model incorporating the arm angle(φ)and the Global Configuration(GC)to avoid joint limits and singularities,and a load capacity model to constrain the feasible domain of the arm angle.Further,trajectory tracking simulations and experiments are conducted to validate the feasibility of the proposed inverse solution method.The simulated maximum output torque,maximum output power and total energy consumption of the robotic arm are reduced by up to 2.0%,13.3%,and 33.3%,respectively.The experimental results demonstrate that the robotic arm can bear heavy loads in a human-like posture,effectively reducing the maximum output torque and energy consumption of the robotic arm by 1.83%and 5.03%,respectively,while avoiding joints beyond geometric and load capacity limitations.The proposed design provides a high payload–weight ratio and an efficient pose control solution for robotic arms,which can potentially broaden the application spectrum of humanoid robots.展开更多
The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the...The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.展开更多
The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are consider...The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are considered simultaneously. On one hand, the joint loads are calculated and constrained within a limited value to avoid the failure of fasteners. On the other hand, the manufacturing constraints of the material distribution in the machining directions of stiffeners are implemented by an improved piecewise interpolation based on a beveled cut-surface. It is proven that the objective function is strictly continuous and differentiable with respect to the piecewise interpolation. The effects of the extended method with two different constraints are highlighted by typical numerical examples. Compared with the standard topology optimization, the final designs have clearly shown the layout of stiffeners and the joint loads have been perfectly constrained to a satisfying level.展开更多
In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate duri...In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate during the process and incremental cyclic impact on raw coal and briquettes has been studied.Experimental results show that the presence of local static load restraint improves the impact resistance of the coal-rock,and the damage factor of the coal-rock shows obvious zoning characteristics.When the coal-rock is in an elastic state,the partition with a larger static load restraint area has stronger impact resistance,when the coal-rock is in a plastic state,the partition with a larger static load restraint area has a weaker impact resistance.Increasing impulsive cyclic impacts have a higher damage efficiency to coal-rock than constant impulsive cyclic impacts.The difference in rock breaking efficiency between the two cyclic impact methods is mainly reflected in the partition with the largest constrained area.The crack propagation on the coal-rock surface is more consistent with the partition characteristics of the damage factor.When the static load constrained zone is in an elastic state,the static load has an inhibitory effect on the crack growth.When the static load confinement zone is in a plastic state,the cracks mainly propagate in the static load confinement zone,and the constrained zone mainly consists of tensile cracks that grow in the vertical direction,while the cracks in the non-constrained zone mainly grow in an oblique direction.Finally,fracture mechanics was applied to analyze the failure type of the sample.展开更多
We propose a new algorithm,named Asymmetric Genetic Algorithm(AGA),for solving optimization problems of steel frames.The AGA consists of a developed penalty function,which helps to find the best generation of the popu...We propose a new algorithm,named Asymmetric Genetic Algorithm(AGA),for solving optimization problems of steel frames.The AGA consists of a developed penalty function,which helps to find the best generation of the population.The objective function is to minimize the weight of the whole steel structure under the constraint of ultimate loads defined for structural steel buildings by the American Institute of Steel Construction(AISC).Design variables are the cross-sectional areas of elements(beams and columns)that are selected from the sets of side-flange shape steel sections provided by the AISC.The finite element method(FEM)is utilized for analyzing the behavior of steel frames.A 15-storey three-bay steel planar frame is optimized by AGA in this study,which was previously optimized by algorithms such as Particle Swarm Optimization(PSO),Particle Swarm Optimizer with Passive Congregation(PSOPC),Particle Swarm Ant Colony Optimization(HPSACO),Imperialist Competitive Algorithm(ICA),and Charged System Search(CSS).The results of AGA such as total weight of the structure and number of analyses are compared with the results of these algorithms.AGA performs better in comparison to these algorithms with respect to total weight and number of analyses.In addition,five numerical examples are optimized by AGA,Genetic Algorithm(GA),and optimization modules of SAP2000,and the results of them are compared.The results show that AGA can decrease the time of analyses,the number of analyses,and the total weight of the structure.AGA decreases the total weight of regular and irregular steel frame about 11.1%and 26.4%in comparing with the optimized results of SAP2000,respectively.展开更多
基金funded by the National Natural Science Foundation of China(NO.52175069).
文摘Inspired by the driving muscles of the human arm,a 4-Degree of Freedom(DOF)concentrated driving humanoid robotic arm is proposed based on a spatial double parallel four-bar mechanism.The four-bar mechanism design reduces the inertia of the elbow-driving unit and the torque by 76.65%and 57.81%,respectively.Mimicking the human pose regulation strategy that the human arm picks up a heavy object by adjusting its posture naturally without complicated control,the robotic arm features an integrated position-level closed-form inverse solution method considering both geometric and load capacity limitations.This method consists of a geometric constraint model incorporating the arm angle(φ)and the Global Configuration(GC)to avoid joint limits and singularities,and a load capacity model to constrain the feasible domain of the arm angle.Further,trajectory tracking simulations and experiments are conducted to validate the feasibility of the proposed inverse solution method.The simulated maximum output torque,maximum output power and total energy consumption of the robotic arm are reduced by up to 2.0%,13.3%,and 33.3%,respectively.The experimental results demonstrate that the robotic arm can bear heavy loads in a human-like posture,effectively reducing the maximum output torque and energy consumption of the robotic arm by 1.83%and 5.03%,respectively,while avoiding joints beyond geometric and load capacity limitations.The proposed design provides a high payload–weight ratio and an efficient pose control solution for robotic arms,which can potentially broaden the application spectrum of humanoid robots.
文摘The article proposes an Equivalent Single Layer(ESL)formulation for the linear static analysis of arbitrarily-shaped shell structures subjected to general surface loads and boundary conditions.A parametrization of the physical domain is provided by employing a set of curvilinear principal coordinates.The generalized blendingmethodology accounts for a distortion of the structure so that disparate geometries can be considered.Each layer of the stacking sequence has an arbitrary orientation and is modelled as a generally anisotropic continuum.In addition,re-entrant auxetic three-dimensional honeycomb cells with soft-core behaviour are considered in the model.The unknown variables are described employing a generalized displacement field and pre-determined through-the-thickness functions assessed in a unified formulation.Then,a weak assessment of the structural problem accounts for shape functions defined with an isogeometric approach starting fromthe computational grid.Ageneralizedmethodology has been proposed to define two-dimensional distributions of static surface loads.In the same way,boundary conditions with three-dimensional features are implemented along the shell edges employing linear springs.The fundamental relations are obtained from the stationary configuration of the total potential energy,and they are numerically tackled by employing the Generalized Differential Quadrature(GDQ)method,accounting for nonuniform computational grids.In the post-processing stage,an equilibrium-based recovery procedure allows the determination of the three-dimensional dispersion of the kinematic and static quantities.Some case studies have been presented,and a successful benchmark of different structural responses has been performed with respect to various refined theories.
基金supported by National Natural Science Foundation of China (Nos. 11432011, 11620101002)National key research and development program of China (No. 2017YFB1102800)Key Research and Development Program of Shaanxi, China (No. S2017-ZDYF-ZDXM-GY-0035)
文摘The purpose of this paper is to present an extended topology optimization method for the stiffeners layout design of aircraft assembled structures. Multi-fastener joint loads and manufacturing constraints are considered simultaneously. On one hand, the joint loads are calculated and constrained within a limited value to avoid the failure of fasteners. On the other hand, the manufacturing constraints of the material distribution in the machining directions of stiffeners are implemented by an improved piecewise interpolation based on a beveled cut-surface. It is proven that the objective function is strictly continuous and differentiable with respect to the piecewise interpolation. The effects of the extended method with two different constraints are highlighted by typical numerical examples. Compared with the standard topology optimization, the final designs have clearly shown the layout of stiffeners and the joint loads have been perfectly constrained to a satisfying level.
基金the financial support of the Project supported by Department of Science and Technology of Liaoning province(2023-BS-083)Basic Research Funds of China University of Mining and Technology(Beijing)-Doctoral Outstanding Innovation Talent Cultivation Fund(NO.BBJ2023004).
文摘In order to obtain the characteristics of the effects of cyclic impact loading on the damage of coal-rock in the presence of a local static load constraint,the evolution of the damage factor and the fracture rate during the process and incremental cyclic impact on raw coal and briquettes has been studied.Experimental results show that the presence of local static load restraint improves the impact resistance of the coal-rock,and the damage factor of the coal-rock shows obvious zoning characteristics.When the coal-rock is in an elastic state,the partition with a larger static load restraint area has stronger impact resistance,when the coal-rock is in a plastic state,the partition with a larger static load restraint area has a weaker impact resistance.Increasing impulsive cyclic impacts have a higher damage efficiency to coal-rock than constant impulsive cyclic impacts.The difference in rock breaking efficiency between the two cyclic impact methods is mainly reflected in the partition with the largest constrained area.The crack propagation on the coal-rock surface is more consistent with the partition characteristics of the damage factor.When the static load constrained zone is in an elastic state,the static load has an inhibitory effect on the crack growth.When the static load confinement zone is in a plastic state,the cracks mainly propagate in the static load confinement zone,and the constrained zone mainly consists of tensile cracks that grow in the vertical direction,while the cracks in the non-constrained zone mainly grow in an oblique direction.Finally,fracture mechanics was applied to analyze the failure type of the sample.
文摘We propose a new algorithm,named Asymmetric Genetic Algorithm(AGA),for solving optimization problems of steel frames.The AGA consists of a developed penalty function,which helps to find the best generation of the population.The objective function is to minimize the weight of the whole steel structure under the constraint of ultimate loads defined for structural steel buildings by the American Institute of Steel Construction(AISC).Design variables are the cross-sectional areas of elements(beams and columns)that are selected from the sets of side-flange shape steel sections provided by the AISC.The finite element method(FEM)is utilized for analyzing the behavior of steel frames.A 15-storey three-bay steel planar frame is optimized by AGA in this study,which was previously optimized by algorithms such as Particle Swarm Optimization(PSO),Particle Swarm Optimizer with Passive Congregation(PSOPC),Particle Swarm Ant Colony Optimization(HPSACO),Imperialist Competitive Algorithm(ICA),and Charged System Search(CSS).The results of AGA such as total weight of the structure and number of analyses are compared with the results of these algorithms.AGA performs better in comparison to these algorithms with respect to total weight and number of analyses.In addition,five numerical examples are optimized by AGA,Genetic Algorithm(GA),and optimization modules of SAP2000,and the results of them are compared.The results show that AGA can decrease the time of analyses,the number of analyses,and the total weight of the structure.AGA decreases the total weight of regular and irregular steel frame about 11.1%and 26.4%in comparing with the optimized results of SAP2000,respectively.