期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Study on Direct Synthesis of Diphenyl Carbonate with Heterogeneous Catalytic Reaction (VI) Effect of Sn Loading Method and Content on Activity of Sn-Pd Supported Catalyst 被引量:5
1
作者 张光旭 吴元欣 +3 位作者 马沛生 田崎峰 吴广文 李定或 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第2期191-195,共5页
The compound metal oxide LaxPbyMnzO used as support was prepared by the sol-gel method, and the catalyst in which Pd was used as active component and Sn as co-active component for direct synthesis of diphenyl carbonat... The compound metal oxide LaxPbyMnzO used as support was prepared by the sol-gel method, and the catalyst in which Pd was used as active component and Sn as co-active component for direct synthesis of diphenyl carbonate (DPC) with heterogeneous catalytic reaction was obtained by co-calcination and precipitation respectively.The catalyst was characterized by XRD, SEM and TEM respectively. The specific surface area of catalysts was measured by ChemBET3000 instrument, and the activity of the catalysts was tested by the synthesis of DPC in a pressured reactor. The results showed that when the co-active component Sn was added by co-calcination method A, its loading content was equal to 14.43% and active component Pd was loaded by precipitation, the yield and selectivity of DPC could reach 26.78% and 99% respectively. 展开更多
关键词 Sn loading content diphenyl carbonate PRECIPITATION co-calcination
下载PDF
Preparation and in vitro Release Properties of Mercaptopurine Drug-loaded Magnetic Microspheres 被引量:2
2
作者 XU Haixing ZHANG Yu +7 位作者 NIU Xiaoqian WANG Ling CHEN Hui ZHANG Xi TANG Qiuhan HUANG Zhijun LIU Hui XU Peihu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1231-1235,共5页
Magnetic Fe304 nanoparticles were synthesized by co-precipitation method and the mercaptopurine (MER) drug-loaded magnetic microspheres were obtained through emulsion cross-linking methods. The efficiency of this ap... Magnetic Fe304 nanoparticles were synthesized by co-precipitation method and the mercaptopurine (MER) drug-loaded magnetic microspheres were obtained through emulsion cross-linking methods. The efficiency of this approach was evaluated in terms of drug loading content (DLC), encapsulation efficiency (EE) and delivery properties in vitro, determined by high performance liquid chromatograph (HPLC). The microspheres showed good DLC values of 11.8%, as well as good EE values of 79.4%. The in vitro drug release study was carried out in phosphate buffer solution (PBS) simulated body fluid, at 37 ~C with pH=7.4. The release profiles showed an initial fast release rate, which decreased as time progressed and about 84 % had been released after 48 h. The experimental results indicated that the prepared magnetic microspheres may be useful for potential applications of MER for magnetically targeted chemotherapy. 展开更多
关键词 MERCAPTOPURINE magnetic microspheres drug loading content encapsulation efficiency
下载PDF
Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process 被引量:12
3
作者 Fanbin Meng Huagao Wang +5 位作者 Wei Zijian Chen Tian Li Chunyuan Li Yu Xuan Zuowan Zhou 《Nano Research》 SCIE EI CAS CSCD 2018年第5期2847-2861,共15页
Despite recent progress in the synthesis and application of graphene-based aerogels, some challenges such as scalable and cost-effective production, and miniaturization still remain, which hinder the practical applica... Despite recent progress in the synthesis and application of graphene-based aerogels, some challenges such as scalable and cost-effective production, and miniaturization still remain, which hinder the practical application of these materials. Here we report a large-scale electrospinning method to generate graphene-based aerogel microspheres (AMs), which show broadband, tunable and high-performance microwave absorption. Graphene/Fe3O4 AMs with a large number of openings with hierarchical connecting radial microcharmels can be obtained via electrospinning-freeze drying followed by calcination. Importantly, for a given Fe3O4:graphene mass ratio, altering the shape of aerogel monoliths or powders into aerogel microspheres leads to unique electromagnetic wave properties. As expected, the reflection loss of graphene/Fe3O4 AMs-1:1 with only 5 wt.% absorber loading reaches -51.5 dB at 9.2 GHz with a thickness of 4.0 mm and a broad absorption bandwidth (RL 〈-10 dB) of 6.5 GHz. Furthermore, switching to coaxial electrospinning enables the fabrication of SiO2 coatings to construct graphene/Fe3O4@SiO2 core-shell AMs. The coatings influence the electromagnetic wave absorption of graphene/Fe3O4 AMs significantly. In view of these advantages, we believe that this processing technique may be extended to fabricate a wide range of unique graphene-based architectures for functional design and applications. 展开更多
关键词 electrospun graphene-based aerogel microspheres electromagnetic wave absorption impedance matching ultralow loading content
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部