The pinwheel pattern as a suitable and advantageous alternative for the loading implementation of the pallet loading problem (PLP) is identified after a survey on the loading pattern. The definitions, elements, cate...The pinwheel pattern as a suitable and advantageous alternative for the loading implementation of the pallet loading problem (PLP) is identified after a survey on the loading pattern. The definitions, elements, categories, generating algorithms of the pinwheel pattern are discussed and a uniform symmetric pinwheel notation is proposed. Based on the forming geometry of a pinwheel, the pinwheel structure is analyzed in terms of the innate box ratio, the box/block orientation and the box number by combinatorial and geometrical methods. A revised data set for the PLP with an area ratio range from 1 to 76 and a box ratio range from 1 to 10 is proposed. All pinwheel instances with this data set are calculated, and box ratio range is obtained for each possible pinwheel pattern, which can be found for all non-prime numbers of boxes. And a high box ratio makes an optimal pinwheel pattern more likely appear. Results identify the impact of the above pinwheel pattern and the box ratio on the pallet loading problem.展开更多
The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxe...The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxes into a single container. Both algorithms adopt the concept of building layers on one face of the container, but the first heuristic determines the layer face once for all, while the second treats the remaining container space as a reduced-sized container after one layer is loaded and, hence, selects the layer face dynamically. To handle the layout design problem at a layer's level, a block-based 2D packing procedure is also developed. Numerical studies demonstrate the efficiency of the heuristics.展开更多
This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for exam...This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.展开更多
Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to...Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to schedule their loads. In this paper, load scheduling problem is formulated as a LCP (load commitment problem). The load model is general and can model atomic and non-atomic loads. Furthermore, it can also take into consideration the relative discomfort caused by delay in scheduling any load. For this purpose, a single parameter "uric" is introduced in the load model which captures the relative discomfort caused by delay in scheduling a particular load. Guidelines for choosing this parameter are given. All the other parameters of the proposed load model can be easily specified by the consumer. The paper shows that the general LCP can be viewed as multi-stage decision making problem or a MDP (Markov decision problem). RL (reinforcement learning) based algorithm is developed to solve this problem. The efficacy of the algorithm is investigated when the price of electricity is available in advance as well as for the case when it is random. The scalability of the approach is also investigated.展开更多
The application of electrified railway directly promotes relevant studies on pantograph-catenary interac- tion. With the increase of train running speed, the operating conditions for pantograph and catenary have becom...The application of electrified railway directly promotes relevant studies on pantograph-catenary interac- tion. With the increase of train running speed, the operating conditions for pantograph and catenary have become increasingly complex. This paper reviews the related achievements contributed by groups and institutions around the world. This article specifically focuses on three aspects: The dynamic characteristics of the panto- graph and catenary components, the systems' dynamic properties, and the environmental influences on the pantograph-catenary interaction. In accordance with the existing studies, future research may prioritize the task of identifying the mechanism of contact force variation. This kind of study can be carried out by simplifying the pantograph-catenary interaction into a moving load problem and utilizing the theory of matching mechanical impedance. In addition, developing a computational platform that accommodates environmental interferences and multi-field coupling effects is necessary in order to further explore applications based on fundamental studies.展开更多
基金The National Natural Science Foundation of China(No.70571033,70831002)
文摘The pinwheel pattern as a suitable and advantageous alternative for the loading implementation of the pallet loading problem (PLP) is identified after a survey on the loading pattern. The definitions, elements, categories, generating algorithms of the pinwheel pattern are discussed and a uniform symmetric pinwheel notation is proposed. Based on the forming geometry of a pinwheel, the pinwheel structure is analyzed in terms of the innate box ratio, the box/block orientation and the box number by combinatorial and geometrical methods. A revised data set for the PLP with an area ratio range from 1 to 76 and a box ratio range from 1 to 10 is proposed. All pinwheel instances with this data set are calculated, and box ratio range is obtained for each possible pinwheel pattern, which can be found for all non-prime numbers of boxes. And a high box ratio makes an optimal pinwheel pattern more likely appear. Results identify the impact of the above pinwheel pattern and the box ratio on the pallet loading problem.
基金the Natural Sciences and Engineering Research Council of Canada (NSERC) under the Discovery Grant Program
文摘The container loading problem (CLP) is a well-known NP-hard problem. Due to the computation complexity, heuristics is an often-sought approach. This article proposes two heuristics to pack homogeneous rectangular boxes into a single container. Both algorithms adopt the concept of building layers on one face of the container, but the first heuristic determines the layer face once for all, while the second treats the remaining container space as a reduced-sized container after one layer is loaded and, hence, selects the layer face dynamically. To handle the layout design problem at a layer's level, a block-based 2D packing procedure is also developed. Numerical studies demonstrate the efficiency of the heuristics.
文摘This paper is a further study of two papers [1] and [2], which were related to Ill-Conditioned Load Flow Problems and were published by IEEE Trans. PAS. The authors of this paper have some different opinions, for example, the 11-bus system is not an ill-conditioned system. In addition, a new approach to solve Load Flow Problems, E-ψtc, is introduced. It is an explicit method;solving linear equations is not needed. It can handle very tough and very large systems. The advantage of this method has been fully proved by two examples. The authors give this new method a detailed description of how to use it to solve Load Flow Problems and successfully apply it to the 43-bus and the 11-bus systems. The authors also propose a strategy to test the reliability, and by solving gradient equations, this new method can answer if the solution exists or not.
文摘Under the smart grid paradigm, in the near future all consumers will be exposed to variable pricing schemes introduced by utilities. Hence, there is a need to develop algorithms which could be used by the consumers to schedule their loads. In this paper, load scheduling problem is formulated as a LCP (load commitment problem). The load model is general and can model atomic and non-atomic loads. Furthermore, it can also take into consideration the relative discomfort caused by delay in scheduling any load. For this purpose, a single parameter "uric" is introduced in the load model which captures the relative discomfort caused by delay in scheduling a particular load. Guidelines for choosing this parameter are given. All the other parameters of the proposed load model can be easily specified by the consumer. The paper shows that the general LCP can be viewed as multi-stage decision making problem or a MDP (Markov decision problem). RL (reinforcement learning) based algorithm is developed to solve this problem. The efficacy of the algorithm is investigated when the price of electricity is available in advance as well as for the case when it is random. The scalability of the approach is also investigated.
基金Acknowledgements The authors are grateful for the support provided by the National Key Research and Development Plan-Specific Project of Advanced Rail Transportation (Grant Nos. 2016YFB1200401-102B and 2016YFBI200506), the National Natural Science Foundation of China (Grant No. 51475391), and the Project of Research and Development of Science and Technology from the China Railway Corporation (Grant No. 2017J008-L).
文摘The application of electrified railway directly promotes relevant studies on pantograph-catenary interac- tion. With the increase of train running speed, the operating conditions for pantograph and catenary have become increasingly complex. This paper reviews the related achievements contributed by groups and institutions around the world. This article specifically focuses on three aspects: The dynamic characteristics of the panto- graph and catenary components, the systems' dynamic properties, and the environmental influences on the pantograph-catenary interaction. In accordance with the existing studies, future research may prioritize the task of identifying the mechanism of contact force variation. This kind of study can be carried out by simplifying the pantograph-catenary interaction into a moving load problem and utilizing the theory of matching mechanical impedance. In addition, developing a computational platform that accommodates environmental interferences and multi-field coupling effects is necessary in order to further explore applications based on fundamental studies.