期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Progressive collapse resisting capacity of reinforced concrete load bearing wall structures 被引量:1
1
作者 Alireza Rahai Alireza Shahin Farzad Hatami 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2730-2738,共9页
Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthqu... Reinforced concrete(RC) load bearing wall is widely used in high-rise and mid-rise buildings. Due to the number of walls in plan and reduction in lateral force portion, this system is not only stronger against earthquakes, but also more economical. The effect of progressive collapse caused by removal of load bearing elements, in various positions in plan and stories of the RC load bearing wall system was evaluated by nonlinear dynamic and static analyses. For this purpose, three-dimensional model of 10-story structure was selected. The analysis results indicated stability, strength and stiffness of the RC load-bearing wall system against progressive collapse. It was observed that the most critical condition for removal of load bearing walls was the instantaneous removal of the surrounding walls located at the corners of the building where the sections of the load bearing elements were changed. In this case, the maximum vertical displacement was limited to 6.3 mm and the structure failed after applying the load of 10 times the axial load bored by removed elements. Comparison between the results of the nonlinear dynamic and static analyses demonstrated that the "load factor" parameter was a reasonable criterion to evaluate the progressive collapse potential of the structure. 展开更多
关键词 reinforced concrete(RC) load bearing wall structure progressive collapse fiber sections nonlinear analysis load factor method
下载PDF
Static response of a layered magneto-electro-elastic half-space structure under circular surface loading
2
作者 Jiangyi Chen Junhong Guo 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2017年第2期145-153,共9页
A cylindrical system of vector functions, the stiffness matrix method and the corresponding recursive algorithm are proposed to investigate the static response of transversely isotropic,layered magneto-electro-elastic... A cylindrical system of vector functions, the stiffness matrix method and the corresponding recursive algorithm are proposed to investigate the static response of transversely isotropic,layered magneto-electro-elastic(MEE) structures over a homogeneous half-space substrate subjected to circular surface loading. In terms of the system of vector functions, we expand the extended displacements and stresses, and deduce two sets of ordinary differential equations, which are related to the expansion coeficients. The solution to one of the two sets of these ordinary differential equations can be evaluated by using the stiffness matrix method and the corresponding recursive algorithm. These expansion coeficients are then integrated by adaptive Gaussian quadrature to obtain the displacements and stresses in the physical domain. Two types of surface loads, mechanical pressure and electric loading,are considered in the numerical examples. The calculated results show that the proposed technique is stable and effective in analyzing the layered half-space MEE structures under surface loading. 展开更多
关键词 Magneto-electro-elastic material Layered and half-space structure Stiffness matrix method System of vector functions Surface loading
原文传递
Longitudinal connection effect on initial support steel frames in tunnels--Take the traffic tunnels as examples 被引量:2
3
作者 Kaimeng Ma Jichun Zhang +2 位作者 Junru Zhang Zhiyong Wang Jimeng Feng 《Underground Space》 SCIE EI 2022年第4期608-622,共15页
Most tunnel projects are designed with cross-sectional loads,and the inhomogeneity of the longitudinal forces is ignored.In theory,such a support structure can resist large loads,but in practice,large deformation,conc... Most tunnel projects are designed with cross-sectional loads,and the inhomogeneity of the longitudinal forces is ignored.In theory,such a support structure can resist large loads,but in practice,large deformation,concrete cracking,steel frame distortion,and other phenomena often occur in tunnels under poor surrounding rock conditions.Hence,the longitudinal stability of the tunnel must be considered.In this study,the mechanism of longitudinal connecting ribs(LCRs)of tunnels was investigated through element tests,theoretical analyses,and numerical simulations,and the effect of the LCRs was evaluated experimentally.The applicability of the constitutive relations and boundary conditions of the numerical model was verified.The instability mode of the steel frame reflecting the longitudinal stress gradient of the tunnel was analyzed,and the longitudinal surrounding rock pressure and the verified numerical model were applied to analyze the LCR using the load structure method.The results indicate the following:(1)LCRs can effectively improve the ultimate bearing capacity and stability of a structure and reduce the area and degree of damage;(2)Two types of instability modes occur in tunnel steel frames,and the main factor is bending failure caused by the axial force;(3)The distance sensitivity of the LCR in the tunnel is higher than the stiffness sensitivity.For large deformations of tunnels,double rows of rebars with a spacing of less than 1.5 m should be used as longitudinal connections. 展开更多
关键词 TUNNEL Longitudinal connecting ribs Load structure method Optimization design EXPERIMENT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部