期刊文献+
共找到7,868篇文章
< 1 2 250 >
每页显示 20 50 100
Bioresorbable stent unloading during percutaneous coronary intervention:Early detection and management
1
作者 Nabil Eid Mohamed Abdel Wahab Amardev Singh Thanu 《World Journal of Cardiology》 2024年第10期616-618,共3页
In this letter,we comment on a recent case report by Sun et al in the World Journal of Cardiology.The report describes the successful management of a rare complication:The unloading or detachment of a bioresorbable st... In this letter,we comment on a recent case report by Sun et al in the World Journal of Cardiology.The report describes the successful management of a rare complication:The unloading or detachment of a bioresorbable stent(BRS)during percutaneous coronary intervention(PCI)in a male patient.The unloading of BRS was detected via angiography and intravascular ultrasound(IVUS)imaging of the left coronary artery and left anterior descending artery.Although this case is interesting,the authors’report lacked crucial details.Specifically,insufficient information about the type of BRS used,potential causes of BRS unloading,or whether optical coherence tomography(OCT)imaging for coronary arteries was performed before,during,or after PCI.The OCT imaging of coronary arteries before PCI can potentially prevent BRS unloading due to its higher resolution compared to IVUS.In addition,despite detecting myocardial bridging during the PCI,the authors did not provide any details regarding this variation.Here we discuss the various types of BRS,the importance of OCT in PCI,and the clinical relevance of myocardial bridging. 展开更多
关键词 Coronary artery diseases Percutaneous coronary intervention Optical coherence tomography Bioresorbable/Biodegradable stents Stent unloading/detachment Myocardial bridge Intravascular ultrasound Coronary angiography
下载PDF
Numerical Simulation-Based Analysis of the Impact of Overloading on Segmentally Assembled Bridges
2
作者 Donghui Ma Wenqi Wu +4 位作者 Yuan Li Lun Zhao Yingchun Cai Pan Guo Shaolin Yang 《Structural Durability & Health Monitoring》 EI 2024年第5期663-681,共19页
Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acti... Segmentally assembled bridges are increasinglyfinding engineering applications in recent years due to their unique advantages,especially as urban viaducts.Vehicle loads are one of the most important variable loads acting on bridge structures.Accordingly,the influence of overloaded vehicles on existing assembled bridge structures is an urgent concern at present.This paper establishes thefinite element model of the segmentally assembled bridge based on ABAQUS software and analyzes the influence of vehicle overload on an assembled girder bridge struc-ture.First,afinite element model corresponding to the target bridge is established based on ABAQUS software,and the load is controlled to simulate vehicle movement in each area of the traveling zone at different times.Sec-ond,the key cross-sections of segmental girder bridges are monitored in real time based on the force character-istics of continuous girder bridges,and they are compared with the simulation results.Finally,a material damage ontology model is introduced,and the structural damage caused by different overloading rates is compared and analyzed.Results show that thefinite element modeling method is accurate by comparing with on-site measured data,and it is suitable for the numerical simulation of segmental girder bridges;Dynamic sensors installed at 1/4L,1/2L,and 3/4L of the segmental girder main beams could be used to identify the dynamic response of segmental girder bridges;The bottom plate of the segmental girder bridge is mostly damaged at the position where the length of the precast beam section changes and the midspan position.With the increase in load,damage in the direction of the bridge develops faster than that in the direction of the transverse bridge.Thefindings of this study can guide maintenance departments in the management and maintenance of bridges and vehicles. 展开更多
关键词 Segmentally assembled bridge dynamic response moving loads OVERloading structural damage finite element analysis
下载PDF
A discussion about the limitations of the Eurocode’s high-speed load model for railway bridges
3
作者 Gonçalo Ferreira Pedro Montenegro +2 位作者 JoséRui Pinto António Abel Henriques Rui Calçada 《Railway Engineering Science》 EI 2024年第2期211-228,共18页
High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(H... High-speed railway bridges are subjected to normative limitations concerning maximum permissible deck accelerations.For the design of these structures,the European norm EN 1991-2 introduces the high-speed load model(HSLM)—a set of point loads intended to include the effects of existing high-speed trains.Yet,the evolution of current trains and the recent development of new load models motivate a discussion regarding the limits of validity of the HSLM.For this study,a large number of randomly generated load models of articulated,conventional,and regular trains are tested and compared with the envelope of HSLM effects.For each type of train,two sets of 100,000 load models are considered:one abiding by the limits of the EN 1991-2 and another considering wider limits.This comparison is achieved using both a bridge-independent metric(train signatures)and dynamic analyses on a case study bridge(the Canelas bridge of the Portuguese Railway Network).For the latter,a methodology to decrease the computational cost of moving loads analysis is introduced.Results show that some theoretical load models constructed within the stipulated limits of the norm can lead to effects not covered by the HSLM.This is especially noted in conventional trains,where there is a relation with larger distances between centres of adjacent vehicle bogies. 展开更多
关键词 High-speed load model Dynamic analysis High-speed railways Train signature Railway bridges Deck acceleration
下载PDF
Field Load Test Based SHM System Safety Standard Determination for Rigid Frame Bridge
4
作者 Xilong Zheng Qiong Wang Di Guan 《Structural Durability & Health Monitoring》 EI 2024年第3期361-376,共16页
The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests wereconducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation ... The deteriorated continuous rigid frame bridge is strengthened by external prestressing. Static loading tests wereconducted before and after the bridge rehabilitation to verify the effectiveness of the rehabilitation process. Thestiffness of the repaired bridge is improved, and the maximum deflection of the load test is reduced from 37.9 to27.6 mm. A bridge health monitoring system is installed after the bridge is reinforced. To achieve an easy assessmentof the bridge’s safety status by directly using transferred data, a real-time safety warning system is createdbased on a five-level safety standard. The threshold for each safety level will be determined by theoretical calculationsand the outcomes of static loading tests. The highest risk threshold will be set at the ultimate limit statevalue. The remaining levels, namely middle risk, low risk, and very low risk, will be determined usingreduction coefficients of 0.95, 0.9, and 0.8, respectively. 展开更多
关键词 Continuous rigid frame bridge REHABILITATION long-term monitoring field load test safety standard determination
下载PDF
Analysis of the Application of Static Load Test in Bridge Bearing Capacity Testing
5
作者 Wei Fu Bo Liu 《Journal of Architectural Research and Development》 2024年第3期36-41,共6页
This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load... This article uses real engineering projects as examples to analyze how static load test technology is applied in testing the bridge-bearing capacity.The analysis covers aspects such as testing section layout,test load and efficiency coefficient,loading plan,evaluation optimization,test result modification,and result evaluation.The aim is to support the accurate detection and evaluation of bridge-bearing capacity. 展开更多
关键词 bridge engineering Bearing capacity Static load test loading plan Test evaluation
下载PDF
Load Testing in Bridge Maintenance
6
作者 Bo Liu Xu Meng +1 位作者 Ji Li Zhi Tu 《Journal of Architectural Research and Development》 2024年第3期63-68,共6页
Highway bridges are a crucial component in road transportation networks.These bridges must be maintained according to usage requirements regularly.Test results must be considered before devising a maintenance plan.Loa... Highway bridges are a crucial component in road transportation networks.These bridges must be maintained according to usage requirements regularly.Test results must be considered before devising a maintenance plan.Load testing is a vital method of assessing the quality and performance of highway bridges.The outcomes of these tests facilitate the formulation of maintenance plans.This article examines the definition of load testing,its significance,and the process of execution,with the goal of providing support for bridge inspection and maintenance. 展开更多
关键词 Highway bridge load test and inspection bridge maintenance
下载PDF
Mechanical properties and failure modes of stratified backfill under triaxial cyclic loading and unloading 被引量:14
7
作者 Wang Jie Song Weidong +1 位作者 Cao Shuai Tan Yuye 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第5期809-814,共6页
Multiple filling of gobs will lead to a layered structure of the backfill.To explore the influence of layering structure on the mechanical properties and failure modes of backfill,different backfill specimens were pre... Multiple filling of gobs will lead to a layered structure of the backfill.To explore the influence of layering structure on the mechanical properties and failure modes of backfill,different backfill specimens were prepared with a cement/sand ratio of 1:4,a slurry concentration of 75%,and backfilling times of 1,2,3 and 4,separately.Triaxial cyclic loading and unloading experiments were carried out.The results show that with an increase in backfilling time,the peak strength of backfill decreases as a polynomial function and the peak strain increases as an exponential function.The cyclic load enhances the linear characteristic of backfill deformation.The loading and unloading deformation moduli have a linear negative correlation with the backfilling time.The unloading deformation modulus is always slightly higher than the loading deformation modulus.The failure modes of stratified backfill are mainly characterized by conjugate shear failure at the upper layer and tensile failure across the layer plane,and there is usually no damage in the lower layer away from the loading area. 展开更多
关键词 STRATIFIED BACKFILL TRIAXIAL cyclic loading and unloading Mechanical properties Failure MODES Deformation MODULUS
下载PDF
Calculation of foundation pit deformation caused by deep excavation considering influence of loading and unloading 被引量:11
8
作者 黄明 刘新荣 +1 位作者 张乃烊 沈启炜 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2164-2171,共8页
A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical prope... A new analytical solution for ground surface settlement induced by deep excavation is proposed based on the elastic half space Melan’s solution,and the analytical model is related to the physical and mechanical properties of soil with the loading and unloading action during excavation process.The change law of earth pressure of the normal consolidation soil after the foundation pit excavation was analyzed,and elastic displacement calculation methods of analytic solution were further established given the influence of excavation and unloading.According to the change of stress state in the excavation process of foundation pit,the planar mechanical analysis model of the foundation excavation problem was established.By combining this model with the physical equations and geometric equations of plane strain problem with consideration of the loading and unloading modulus of soil,constitutive equation of the plane strain problem was also established.The loading and unloading modulus formula was obtained by using the parameter calculation method in Duncan-Chang curve model.The constitutive equation obtained from the model was used to calculate the soil stress state of each point to determine its loading and unloading modulus.Finally,the foundation pit displacement change after excavation was calculated,and thus the soil pressure distribution after retaining structure deformation.The theoretical results calculated by making corresponding programs were applied to engineering practice.By comparing the conventional calculation results with monitoring results,the practicability and feasibility of the calculation model were verified,which should provide a theoretical basis for similar projects. 展开更多
关键词 foundation pit Melan's solution loading and unloading stress state Duncan-Chang curve model
下载PDF
Experimental investigation on damage evolution behaviour of a granitic rock under loading and unloading 被引量:8
9
作者 戴兵 赵国彦 +1 位作者 H.KONIETZKY P.L.P.WASANTHA 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第5期1213-1225,共13页
In-situ rock failures can result from stress changes due to pure loading and/or unloading. Understanding of the damage evolution behavior in brittle rocks during loading and unloading is imperative for the designs of ... In-situ rock failures can result from stress changes due to pure loading and/or unloading. Understanding of the damage evolution behavior in brittle rocks during loading and unloading is imperative for the designs of rock structures. In this paper, we investigate the damage evolution characteristics of a granitic rock during loading and unloading after a series of triaxial experiments performed at different confining pressures. The axial stress-axial strain variations of the tested specimens revealed that the specimens undergoing unloading fail with a lower axial strain compared to the specimens failed purely by loading. Higher confining pressures were observed to exacerbate the difference. Volumetric strain versus axial strain curves indicated that the curves reverse the trend with the beginning of major damage of specimens. We suggest here a new form of equation to describe the secant modulus variation of brittle rocks against the axial stress for the unloading process. Failure mechanisms of tested specimens showed two distinct patterns, namely, specimens under pure loading failed with a single distinct shear fracture while for the unloading case specimens displayed multiple intersecting fractures. In addition, analysis of the evolution of dissipation and elastic energy during deformation of the specimens under loading and unloading conditions showed differentiable characteristics. Moreover, we evaluated the variations of two damage indices defined based on the energy dissipation and secant modulus evolution during deformation and observed that both of them satisfactorily distinguish key stages of damage evolution. 展开更多
关键词 damage evolution loading and unloading granitic rock triaxial testing
下载PDF
Effect of fatigue loading-confining stress unloading rate on marble mechanical behaviors: An insight into fracture evolution analyses 被引量:6
10
作者 Yu Wang Dongqiao Liu +2 位作者 Jianqiang Han Changhong Li Hao Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1249-1262,共14页
Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The eff... Rocks in underground works usually experience rather complex stress disturbance.For this,their fracture mechanism is significantly different from rocks subjected to conventional triaxial compression conditions.The effects of stress disturbances on rock geomechanical behaviors under fatigue loading conditions and triaxial unloading conditions have been reported in previous studies.However,little is known about the dependence of the unloading rate on fatigue loading and confining stress unloading(FL-CSU)conditions that influence rock failure.In this paper,we aimed at investigating the fracture behaviors of marble under FL-CSU conditions using the post-test X-ray computed tomography(CT)scanning technique and the GCTS RTR 2000 rock mechanics system.Results show that damage accumulation at the fatigue stage can influence the final fracture behaviors of marble.The stored elastic energy for rock samples under FL-CSU tests is relatively larger compared to those under conventional triaxial tests,and the dissipated energy used to drive damage evolution and crack propagation is larger for FL-CSU tests.In FL-CSU tests,as the unloading rate increases,the dissipated energy grows and elastic energy reduces.CT scanning after the test reveals the impacts of the unloading rate on the crack pattern and a fracture degree index is therein defined in this context to represent the crack dimension.It shows that the crack pattern after FL-CSU tests depends on the unloading rate,and the fracture degree is in agreement with the analysis of both the energy dissipation and the amount of energy released.The effect of unloading rate on fracture evolution characteristics of marble is revealed by a series of FL-CSU tests. 展开更多
关键词 Fatigue loading Confining stress unloading unloading rate Energy evolution Computed tomography(CT)scanning
下载PDF
Mechanical Properties of Deep-buried Marble Material Under Loading and Unloading Tests 被引量:2
11
作者 李新平 ZHAO Hang +1 位作者 WANG Bin XIAO Taoli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第3期514-520,共7页
The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to inve... The mechanical properties are essentially different when rock material is subjected to loading or unloading conditions. In this study, loading and unloading tests with various confining pressures are conducted to investigate the mechanical properties of marble material samples taken from the deep diversion tunnels of Jinping II Hydropower Station. The stress-strain relationship, failure characteristics and strength criterion are compared and analyzed based on the experiment results. The results show: in the loading and unloading test, peak strength, lateral strain, axial strain and plastic deformation increase significantly as the confining pressure increases. Lateral strain increased significantly and obvious lateral dilatancy can be observed to the change of confining pressure; The fracture mode is mainly the single shear fracture for the triaxial compression test and post-peak test, angle between the failure surface and the ends of the rock material becomes smaller as the confining pressure increases. Hock-Brown strength criterion reflects the strength characteristics of marble material under two different unloading conditions, and has some supplementary effects to the rock material of mechanical field. 展开更多
关键词 deep-buried material loading and unloading tests mechanical properties strength criterion shear fracture
下载PDF
Mechanical behavior of sandstone during post-peak cyclic loading and unloading under hydromechanical coupling 被引量:3
12
作者 Yanlin Zhao Jinhai Liu +4 位作者 Chunshun Zhang Houquan Zhang Jian Liao Sitao Zhu Lianyang Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期927-947,共21页
This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sands... This paper investigates mechanical behaviours of sandstone during post-peak cyclic loading and unloading subjected to hydromechanical coupling effect, confirming the peak and residual strengths reduction laws of sandstone with water pressure, and revealing the influence of water pressure on the upper limit stress and deformation characteristics of sandstone during post-peak cyclic loading and unloading.Regarding the rock strength, the experimental study confirms that the peak strength σ_(p) and residual strength σ_(r) decrease as water pressure P increases. Especially, the normalized strength parameters σ_(p)/σ_(pk) and σ_(r)/σ_(re) was negatively and linearly correlated with the P/σ_(3). Moreover, the Hoek-Brown strength criterion can be applied to describe the relationship between effective peak strength and effective confining stress. During post-peak cyclic loading and unloading, both the upper limit stress σ_(p(i)) and crack damage threshold stress σ_(cd(i)) of each cycle tend to decrease with the increasing cycle number. A hysteresis loop exists among the loading and unloading stress–strain curves, indicating the unloading deformation modulus E_(unload) is larger than the loading deformation modulus E_(load). Based on experimental results,a post-peak strength prediction model related to water pressure and plastic shear strain is established. 展开更多
关键词 Post-peak stage Cyclic loading and unloading Hydromechanical coupling SANDSTONE Water pressure
下载PDF
The deformation and permeability of Yanji mudstone under cyclic loading and unloading 被引量:1
13
作者 ZENG Zhi-xiong KONG Ling-wei WANG Jun-tao 《Journal of Mountain Science》 SCIE CSCD 2019年第12期2907-2919,共13页
During the constructions of motorways and high-speed railway lines in the Yanji Basin,large amounts of excess mudstones due to the enormous tunnel excavations and slope cuts would be deposited as landfills.Assessing t... During the constructions of motorways and high-speed railway lines in the Yanji Basin,large amounts of excess mudstones due to the enormous tunnel excavations and slope cuts would be deposited as landfills.Assessing the deformation and permeability of Yanji mudstone became important for the design,construction and operation of the landfills.This paper presents an experimental study on the deformation and permeability of Yanji mudstone by carrying out a series of oedometer tests with loading/unloading cycles.The results show that the sample with a lower initial water content exhibited greater swelling deformation after inundation,a lower yield stress,greater deformation and a higher hydraulic conductivity during the loading/unloading cycles.As the number of loading/unloading cycles increased,the yield stress and accumulated plastic deformation increased,while the compression index,rebound index and hydraulic conductivity decreased.The samples became stiffer and their hydromechanical behaviour tended to be stable after three cycles.The compression curves could be divided into pre-yield and post-yield zones.The post-yield zones of compression curves and the rebound curves could be normalized into a unique line,and the pre-yield zones of the compression curves could be described as lines.Basic equations were developed to predict mudstone deformation under cyclic loading and unloading.Additionally,an empirical relationship between the hydraulic conductivity and void ratio was also proposed.The ability of the proposed methods was verified by the overall good agreement between the experimental results and predicted values. 展开更多
关键词 MUDSTONE SWELLING Cyclic loading and unloading DEFORMATION PERMEABILITY
下载PDF
Design of Bridge Expansion Joints with Perforated Dowels Under Impact Loading 被引量:3
14
作者 YODA Teruhiko AYASHI Mamiko 《Transactions of Tianjin University》 EI CAS 2008年第5期340-343,共4页
The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is... The expansion joints are expected to have movement capacity, bearing capacity for static and dynamic loading, water-tightness, low noise emission and traffic safety. In particular, the failure due to impact loading is the main reason for the observed damages. The problem of dynamic behavior of the expansion joints is so complex that we shall focus our attention on the impact factor for vehicle load that is governed by traffic impact. In order to overcome this difficulty, the cantilever-toothed aluminum joint (finger joint) is one of the promising joints under impact loading. In this study, from the viewpoint of design methodology, numerical studies for impact behavior were conducted for aluminum alloy expansion joints with perforated dowels. The design impact factor for the expansion joints with the perforated dowels against traffic impact loading was examined by using numerical simulations. 展开更多
关键词 bridge expansion joints traffic impact loading perforated dowel
下载PDF
Influence of volume compression on the unloading deformation behavior of red sandstone under damage-controlled cyclic triaxial loading 被引量:2
15
作者 Huaizhong Liu Jianliang Pei +3 位作者 Jianfeng Liu Mingli Xiao Li Zhuo Hongqiang Xie 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第5期1200-1212,共13页
A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the dam... A reasonable evaluation of unloading deformation characteristics is of great significance for the effective analysis of deformation and stability of surrounding rocks after underground excavation.In this study,the damage-controlled cyclic triaxial loading tests were conducted to investigate the pore compaction mechanism and its influences on the unloading deformation behavior of red sandstone,including Young’s modulus,Poisson’s ratio,volumetric strain,and irreversible strain.The experimental results show that the increases of volumetric and irreversible strains of rocks can be attributed to the compaction mechanism,which almost dominates the entire pre-peak deformation process.The unloading deformation consists of the reversible linear and nonlinear strains,and the irreversible strain under the influence of the porous grain structure.The pre-peak Young’s modulus tends to increase and then decrease due to the influence of the unloading irreversible strain.However,it hardly changes with the increasing volumetric strain compaction under the influence of reversible nonlinear strain.Instead,the initial unloading tangent modulus is highly related to the volumetric strain,and clearly reflects the compaction state of red sandstone.Furthermore,both the reversible nonlinear and irreversible unloading deformations are independent of confining pressure.This study is beneficial for the theoretical modeling and prediction of cyclic unloading deformation behavior of red sandstone. 展开更多
关键词 Cyclic loading tests Compaction mechanism Volumetric strain unloading tangent modulus Red sandstone
下载PDF
Morphological evolution and flow conduction characteristics of fracture channels in fractured sandstone under cyclic loading and unloading 被引量:1
16
作者 Quanle Zou Zihan Chen +4 位作者 Jinfei Zhan Chunmei Chen Shikang Gao Fanjie Kong Xiaofeng Xia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第12期1527-1540,共14页
In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels... In coal mining,rock strata are fractured under cyclic loading and unloading to form fracture channels.Fracture channels are the main flow narrows for gas.Therefore,expounding the flow conductivity of fracture channels in rocks on fluids is significant for gas flow in rock strata.In this regard,graded incremental cyclic loading and unloading experiments were conducted on sandstones with different initial stress levels.Then,the three-dimensional models for fracture channels in sandstones were established.Finally,the fracture channel percentages were used to reflect the flow conductivity of fracture channels.The study revealed how the particle size distribution of fractured sandstone affects the formation and expansion of fracture channels.It was found that a smaller proportion of large blocks and a higher proportion of small blocks after sandstone fails contribute more to the formation of fracture channels.The proportion of fracture channels in fractured rock can indicate the flow conductivity of those channels.When the proportion of fracture channels varies gently,fluids flow evenly through those channels.However,if the proportion of fracture channels varies significantly,it can greatly affect the flow rate of fluids.The research results contribute to revealing the morphological evolution and flow conductivity of fracture channels in sandstone and then provide a theoretical basis for clarifying the gas flow pattern in the rock strata of coal mines. 展开更多
关键词 CT imaging Flow conductivity Three-dimensional reconstruction Proportion of fracture channels Cyclic loading and unloading
下载PDF
Mechanical and hydraulic properties of fault rocks under multi‑stage cyclic loading and unloading 被引量:1
17
作者 Wentao Hou Dan Ma +3 位作者 Qiang Li Jixiong Zhang Yong Liu Chenyao Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期151-170,共20页
The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock durin... The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function. 展开更多
关键词 Multi-stage cyclic loading and unloading Fault rocks Mechanical properties Hydraulic properties Energy dissipation
下载PDF
The design of automatic loading-and-unloading material manipulator for telescopic punch 被引量:3
18
作者 Luo Lei Wei Zhenchun +2 位作者 Jin Aimin Wang Jinbo Zhang Li 《Computer Aided Drafting,Design and Manufacturing》 2016年第2期58-62,共5页
To reduce the amount of labor in the sheet metal stamping industry, improve the processing efficiency and safety factor and realize the automatic production of stamping, this paper designs a new type of overall plan a... To reduce the amount of labor in the sheet metal stamping industry, improve the processing efficiency and safety factor and realize the automatic production of stamping, this paper designs a new type of overall plan about automatic loading and unloading material manipulator for telescopic punch which can realize the telescopic movements with two degrees. The mechanical structure of the manipulator includes a lifting device and a telescopic device. Using PLC control program, the control system can automatically achieve continuous beat actions of drawing and stacking for the processing raw materials. According to the mechanical structure, the paper analyzes the working principle and control strategy of each component in the loading-and-unloading material manipulator systems. 展开更多
关键词 automatic loading and unloading system MANIPULATOR PLC control
下载PDF
A STUDY OF THE POSTBUCKLING PATH OF CYLINDRICALLY CURVED PANELS OF LAMINATED COMPOSITE MATERIALS DURING LOADING AND UNLOADING 被引量:1
19
作者 董万林 黄小清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第7期651-657,共7页
In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not... In this paper, Dynamic Relaxation Method is applied to study the postbuckling path of cylindrically curved panels of laminated composite materials during loading and unloading. The phenomenon that loading paths do not coincide with unloading paths has been found. Numerical results are given for cylindrically curved cross-ply panels subjected to uniform uniaxial compression under two types of boundary conditions. The influence of the number of layers, the panels curvature and the initial imperfection on the postbuckling paths is discussed. 展开更多
关键词 A STUDY OF THE POSTBUCKLING PATH OF CYLINDRICALLY CURVED PANELS OF LAMINATED COMPOSITE MATERIALS DURING loading AND unloading
下载PDF
Observations of loading-unloading process at Saturn's distant magnetotail 被引量:1
20
作者 ZhongHua Yao 《Earth and Planetary Physics》 2017年第1期53-57,共5页
Using in-situ measurements from the Cassini spacecraft in 2013, we report an Earth substorm-like loading-unloading process at Saturn's distant magnetotail. We found that the loading process is featured with two di... Using in-situ measurements from the Cassini spacecraft in 2013, we report an Earth substorm-like loading-unloading process at Saturn's distant magnetotail. We found that the loading process is featured with two distinct processes: a rapid loading process that was likely driven by an internal source and a slow loading process that was likely driven by solar wind. Each of the two loading processes could also individually lead to an unloading process. The rapid internal loading process lasts for ~ 1-2 hours; the solar wind driven loading process lasts for ~ 3-18 hours and the following unloading process lasts for ~1-3 hours. In this letter, we suggest three possible loadingunloading circulations, which are fundamental in understanding the role of solar wind in driving giant planetary magnetospheric dynamics. 展开更多
关键词 saturn magnetosphere loading-unloading process magnetic reconnection DIPOLARIZATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部