期刊文献+
共找到50篇文章
< 1 2 3 >
每页显示 20 50 100
THE LAW OF ITERATED LOGARITHM FOR R/S STATISTICS 被引量:5
1
作者 林正炎 《Acta Mathematica Scientia》 SCIE CSCD 2005年第2期326-330,共5页
A law of iterated logarithm for R/S statistics with the help of the strong approximations of R/S statistics by functions of a Wiener process is shown.
关键词 R/s statistics law of iterated logarithm strong approximation
下载PDF
PRECISE RATES IN THE LAW OF THE ITERATED LOGARITHM FOR R/S STATISTICS 被引量:3
2
作者 Wu Hongmei Wen Jiwei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第4期461-466,共6页
Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t... Let{Xn;n≥1}be a sequence of i.i.d, random variables with finite variance,Q(n)be the related R/S statistics. It is proved that lim ε↓0 ε^2 ∑n=1 ^8 n log n/1 P{Q(n)≥ε√2n log log n}=2/1 EY^2,where Y=sup0≤t≤1B(t)-inf0≤t≤sB(t),and B(t) is a Brownian bridge. 展开更多
关键词 law of the iterated logarithm R/s statistics tail probability.
下载PDF
Brown运动增量的小时间Chung重对数律
3
作者 刘永宏 曾港 王壮 《应用概率统计》 CSCD 北大核心 2024年第3期398-408,共11页
在本文中,我们研究了Brown运动增量的小时间参数泛函极限问题,得到了Brown运动增量的小时间Chung泛函重对数律.证明中的主要工具是Brown运动的大偏差和小偏差.
关键词 BROWN运动 增量 小时间chung重对数律
下载PDF
Donsker’s Invariance Principle Under the Sub-linear Expectation with an Application to Chung’s Law of the Iterated Logarithm 被引量:19
4
作者 Li-Xin Zhang 《Communications in Mathematics and Statistics》 SCIE 2015年第2期187-214,共28页
We prove a new Donsker’s invariance principle for independent and identically distributed random variables under the sub-linear expectation.As applications,the small deviations and Chung’s law of the iterated logari... We prove a new Donsker’s invariance principle for independent and identically distributed random variables under the sub-linear expectation.As applications,the small deviations and Chung’s law of the iterated logarithm are obtained. 展开更多
关键词 sub-linear expectation Capacity Central limit theorem Invariance principle chung’s law of the iterated logarithm small deviation
原文传递
Precise Asymptotics in Chung's Law of the Iterated Logarithm 被引量:2
5
作者 Li Xin ZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2008年第4期631-646,共16页
Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for ... Let X, X1, X2,... be i.i.d, random variables with mean zero and positive, finite variance σ^2, and set Sn = X1 +... + Xn, n≥1. The author proves that, if EX^2I{|X|≥t} = 0((log log t)^-1) as t→∞, then for any a〉-1 and b〉 -1,lim ε↑1/√1+a(1/√1+a-ε)b+1 ∑n=1^∞(logn)^a(loglogn)^b/nP{max κ≤n|Sκ|≤√σ^2π^2n/8loglogn(ε+an)}=4/π(1/2(1+a)^3/2)^b+1 Г(b+1),whenever an = o(1/log log n). The author obtains the sufficient and necessary conditions for this kind of results to hold. 展开更多
关键词 the law of the iterated logarithm chungs law of the iterated logarithm small deviation i.i.d random variables
原文传递
Chung's Law of the Iterated Logarithm for Subfractional Brownian Motion 被引量:1
6
作者 Na Na LUAN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2017年第6期839-850,共12页
Let XH = {xH(t),t ∈ R+} be a subfractional Brownian motion in Rd. We provide asufficient condition for a self-similar Gaussian process to be strongly locally nondeterministic and show that XH has the property of s... Let XH = {xH(t),t ∈ R+} be a subfractional Brownian motion in Rd. We provide asufficient condition for a self-similar Gaussian process to be strongly locally nondeterministic and show that XH has the property of strong local nondeterminism. Applying this property and a stochastic integral representation of XH, we establish Chung's law of the iterated logarithm for XH. 展开更多
关键词 subfractional Brownian motion self-similar Gaussian processes small ball probability chungs law of the iterated logarithm
原文传递
SOME LIMIT PROPERTIES OF LOCAL TIME FOR RANDOM WALK
7
作者 Wen Jiwei Yan Yunliang 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2006年第1期87-95,共9页
Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A s... Let X,X1,X2 be i. i. d. random variables with EX^2+δ〈∞ (for some δ〉0). Consider a one dimensional random walk S={Sn}n≥0, starting from S0 =0. Let ζ* (n)=supx∈zζ(x,n),ζ(x,n) =#{0≤k≤n:[Sk]=x}. A strong approximation of ζ(n) by the local time for Wiener process is presented and the limsup type and liminf-type laws of iterated logarithm of the maximum local time ζ*(n) are obtained. Furthermore,the precise asymptoties in the law of iterated logarithm of ζ*(n) is proved. 展开更多
关键词 local time random walk precise asymptotic law of iterated logarithm strong approximation.
下载PDF
Laws of the Iterated Logarithm for Locally Square Integrable Martingales
8
作者 Fu Qing GAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第2期209-222,共14页
Three types of laws of the iterated logarithm (LIL) for locally square integrable martingales with continuous parameter are considered by a discretization approach. By this approach, a lower bound of LIL and a numbe... Three types of laws of the iterated logarithm (LIL) for locally square integrable martingales with continuous parameter are considered by a discretization approach. By this approach, a lower bound of LIL and a number of FLIL are obtained, and Chung LIL is extended. 展开更多
关键词 locally square integrable martingales law of the iterated logarithm
原文传递
Chung’s functional law of the iterated logarithm for the Brownian sheet
9
作者 Yonghong LIU Ting ZHANG Yiheng TANG 《Frontiers of Mathematics in China》 SCIE CSCD 2022年第6期1015-1024,共10页
In this paper,we investigate functional limit problem for path of a Brownian sheet,Chung’s functional law of the iterated logarithm for a Brownian sheet is obtained.The main tool in the proof is large deviation and s... In this paper,we investigate functional limit problem for path of a Brownian sheet,Chung’s functional law of the iterated logarithm for a Brownian sheet is obtained.The main tool in the proof is large deviation and small deviation for a Brownian sheet. 展开更多
关键词 Brownian sheet chung’s functional law of the iterated logarithm
原文传递
Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm 被引量:42
10
作者 ZHANG LiXin 《Science China Mathematics》 SCIE CSCD 2016年第12期2503-2526,共24页
Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper est... Kolmogorov's exponential inequalities are basic tools for studying the strong limit theorems such as the classical laws of the iterated logarithm for both independent and dependent random variables. This paper establishes the Kolmogorov type exponential inequalities of the partial sums of independent random variables as well as negatively dependent random variables under the sub-linear expectations. As applications of the exponential inequalities, the laws of the iterated logarithm in the sense of non-additive capacities are proved for independent or negatively dependent identically distributed random variables with finite second order moments.For deriving a lower bound of an exponential inequality, a central limit theorem is also proved under the sublinear expectation for random variables with only finite variances. 展开更多
关键词 sub-linear expectation capacity Kolmogorov's exponential inequality negative dependence laws of the iterated logarithm central limit theorem
原文传递
On the laws of the iterated logarithm under sub-linear expectations 被引量:2
11
作者 Li-Xin Zhang 《Probability, Uncertainty and Quantitative Risk》 2021年第4期409-460,共52页
In this paper,we establish some general forms of the law of the iterated logarithm for independent random variables in a sub-linear expectation space,where the random variables are not necessarily identically distribu... In this paper,we establish some general forms of the law of the iterated logarithm for independent random variables in a sub-linear expectation space,where the random variables are not necessarily identically distributed.Exponential inequalities for the maximum sum of independent random variables and Kolmogorov’s converse exponential inequalities are established as tools for showing the law of the iterated logarithm.As an application,the sufficient and necessary conditions of the law of the iterated logarithm for independent and identically distributed random variables under the sub-linear expectation are obtained.In the paper,it is also shown that if the sub-linear expectation space is rich enough,it will have no continuous capacity.The laws of the iterated logarithm are established without the assumption on the continuity of capacities. 展开更多
关键词 sub-linear expectation Capacity Kolmogorov’s exponential inequality laws of the iterated logarithm
原文传递
Laws of the Iterated Logarithm for High-Dimensional Wiener Sausage
12
作者 Yan Qing WANG Fu Qing GAO 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2011年第8期1599-1610,共12页
Let {β(s),s ≥ O} be the standard Brownian motion in R^d with d ≥ 4 and let |Wr(t)| be the volume of the Wiener sausage associated with {β(s), s ≥ O} observed until time t. Prom the central limit theorem o... Let {β(s),s ≥ O} be the standard Brownian motion in R^d with d ≥ 4 and let |Wr(t)| be the volume of the Wiener sausage associated with {β(s), s ≥ O} observed until time t. Prom the central limit theorem of Wiener sausage, we know that when d ≥ 4 the limit distribution is normal. In this paper, we study the laws of the iterated logarithm for |Wr(t)| - e|Wr(t)| in this case. 展开更多
关键词 Wiener sausage Kolmogorov's law of the iterated logarithm chungs law of the iterated logarithm
原文传递
A LAW OF THE ITERATED LOGARITHM FOR PROCESSES WITH INDEPENDENT INCREMENTS
13
作者 汪嘉冈 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 1994年第1期59-68,共10页
By using the Ito's calculus, a law of the iterated logarithm is established for the processes with independent increments (PⅡ). Let X = {Xt, t ≥ 0} be a PII with Ext=0,V(t)=Ext2<∞and limt∞V(t)=∞ If one of ... By using the Ito's calculus, a law of the iterated logarithm is established for the processes with independent increments (PⅡ). Let X = {Xt, t ≥ 0} be a PII with Ext=0,V(t)=Ext2<∞and limt∞V(t)=∞ If one of the following conditions is satisfied,(2) Suppose the Levy's measure of X may be written as v(dt,ds) = Ft(dx) dV(t) and there is a σ-finite measure G such tnat , 展开更多
关键词 law of the iterated logarithm process with independent increments locally square integrable martingale Ito's calculus
原文传递
扩散过程的拟必然局部Strassen重对数律 被引量:1
14
作者 刘永宏 高付清 《数学物理学报(A辑)》 CSCD 北大核心 2004年第2期231-237,共7页
应用大偏差 ,得到了扩散过程和重随机积分的拟必然局部 Strassen重对数律 .
关键词 扩散过程 Cr p-容度 大偏差 局部strassen重对数律
下载PDF
Brown运动在容度意义下的局部Strassen重对数律 被引量:2
15
作者 刘永宏 《武汉工业学院学报》 CAS 2002年第3期97-98,122,共3页
利用Brown运动在 (r,p) -容度意义下的大偏差 。
关键词 容度意义 局部strassen重对数律 BROWN运动 大偏差 重对数律 布朗运动 随机过程
下载PDF
R/S统计量重对数律的一个注记 被引量:1
16
作者 傅可昂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2010年第6期953-956,共4页
利用广义强逼近方法,对独立同分布序列,在方差可能不存在的情况下,对调整部分和R(n)建立了若干广义重对数律,进而得到了R/S统计量的广义重对数律.
关键词 R/s统计量 调整部分和 重对数律 强逼近
下载PDF
Wiener过程下等间距分段加权和的Chung氏重对数律
17
作者 方宏彬 沈照煊 周瑛 《安徽大学学报(自然科学版)》 CAS 北大核心 2005年第2期1-4,共4页
重对数律是强大数定律的精确化,体现概率统计理论研究中速度问题的重大进展,具有广泛的应用.本文进一步推广著名的Chung氏重对数律到等间距分段加权和的情形之下,得到了关于标准Wiener过程的等间距分段加权和的Chung氏重对数律.
关键词 重对数律 加权和 WIENER过程 强大数定律 分段 精确化 速度问题 概率统计 理论研究 推广
下载PDF
不完全信息随机截尾模型的MLE的Chung重对数律
18
作者 朱强 高付清 《数学物理学报(A辑)》 CSCD 北大核心 2007年第4期672-681,共10页
在一定条件下,证明不完全信息随机截尾模型的MLE满足Chung重对数律.作为其推论得到,不完全信息随机截尾试验下,指数分布和Weibull分布的MLE满足Chung重对数律.
关键词 不完全信息随机截尾 Weilbull分布 MLE chung重对数律
下载PDF
扩散过程在Hlder范数下的局部Strassen重对数律
19
作者 刘永宏 高付清 《数学物理学报(A辑)》 CSCD 北大核心 2006年第5期785-793,共9页
在该文中,作者应用扩散过程在Holder范数下的大偏差得到了扩散过程在Holder范数下的局部Strassen重对数律.并且还得到了重It■积分的泛函重对数律.
关键词 扩散过程 局部strassen重对数律 大偏差 HOLDER范数
下载PDF
离散鞅的Chung重对数律
20
作者 郑明 《高校应用数学学报(A辑)》 CSCD 北大核心 2000年第4期457-460,共4页
1 990年 ,Huggins利用 Skorokhod逼近的办法给出了平方可积鞅的Chung重对数律 ,但结果必须在具有有限的 2 +δ阶矩的条件下成立 .本文在不同的条件下 ,得出了 Chung重对数律 ,而这些条件只涉及到二阶矩 .
关键词 平方可积鞅 chung重对数律 离散鞅 随机变量
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部