By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain a...By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB)were analyzed.The peak local plastic shear strain is proportional to the average plastic shear strain,while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress.The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain.A parametric study was carried out to study the influence of constitutive parameters on shear strain localization.Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain.Higher values of strain-hardening exponent,strain rate sensitive coefficient,melting point,thermal capacity and mass density result in higher critical plastic shear strain,leading to less apparent shear localization at the same average plastic shear strain.The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain,the distributions of local plastic shear strain and deformation in ASB.The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous.When the maximum critical plastic shear strain is reached,the least apparent shear localization occurs.展开更多
The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and diffic...The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and difficulty in establishing an optimization model,the optimization process is often restricted.To address this issue,we propose using a transfer learning Bayesian optimization strategy to improve the efficiency of parameter optimization while minimizing resource consumption.Specifically,we leverage Gaussian process(GP)regression models to establish an integrated model that incorporates both source and target grade production task data.We then measure the similarity weights of each model by comparing their predicted trends,and utilize these weights to accelerate the solution of optimal process parameters for producing target polyolefin grades.In order to enhance the accuracy of our approach,we acknowledge that measuring similarity in a global search space may not effectively capture local similarity characteristics.Therefore,we propose a novel method for transfer learning optimization that operates within a local space(LSTL-PBO).This method employs partial data acquired through random sampling from the target task data and utilizes Bayesian optimization techniques for model establishment.By focusing on a local search space,we aim to better discern and leverage the inherent similarities between source tasks and the target task.Additionally,we incorporate a parallel concept into our method to address multiple local search spaces simultaneously.By doing so,we can explore different regions of the parameter space in parallel,thereby increasing the chances of finding optimal process parameters.This localized approach allows us to improve the precision and effectiveness of our optimization process.The performance of our method is validated through experiments on benchmark problems,and we discuss the sensitivity of its hyperparameters.The results show that our proposed method can significantly improve the efficiency of process parameter optimization,reduce the dependence on source tasks,and enhance the method's robustness.This has great potential for optimizing processes in industrial environments.展开更多
By simulating the electron paramagnetic resonance (EPR) and optical spectra on the basis of the 120 × 120 complete energy matrix, this paper determines the local lattice structure parameters R1 and R2 for MCl...By simulating the electron paramagnetic resonance (EPR) and optical spectra on the basis of the 120 × 120 complete energy matrix, this paper determines the local lattice structure parameters R1 and R2 for MCl:V2+ (M=Na, K, Rb) systems at 77K, 195 K and RT (room temperature 295 K or 302 K), respectively. The theoretical results indicate that there exists a compressed distortion in MCl:V2+ systems. Meanwhile, it finds that the structure parameters R1, R2 and |△R|( = R1 - R2) increase with the rising temperature. Subsequently, from the analysis it concludes that the relation of EPR parameter D vs. △R is approximately linear. Finally, the effects of orbital reduction factor k on the g factors for the three systems have been discussed.展开更多
The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the ene...The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the energy matrix) method. On the basis of this, the local lattice distortions, the ZFS parameters D, a, F and the optical spectrum for Cr2+ ions doped into ZnSe are theoretically investigated, and the contributions of the spin singlets have been taken into account. The calculated ZFS parameters are in good agreement with the experimental values. From our calculations, the tetragonal distortion parameters AR = 0.091A and Aθ = 4.28° of Cr2+ in ZnSe are acquired, and the results suggest that there exists a tetragonal expansion distortion for the local lattice structure of (CrSe4)6- clusters in ZnSe crystals. The influence of the spin singlets on ZFS parameters is also discussed, indicating that the contributions to ZFS parameters a and F cannot be ignored.展开更多
The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using...The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.展开更多
The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS...The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.展开更多
In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,s...In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate.展开更多
The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been ...The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.展开更多
By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complet...By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.展开更多
Based on the experimental results of local temperature field formed in the evolution period of defects, the defect field is defined by this internal temperature field. The evolutionary processes of statistically corre...Based on the experimental results of local temperature field formed in the evolution period of defects, the defect field is defined by this internal temperature field. The evolutionary processes of statistically correlative meso-scopic defects are analysed with the growth rate and nucleation rate of the meso-defect, and it is deemed that the dynamic failure process of the viscoelastic material with defects can be quantitatively described by the normal method of the procedure of heat wave transmission. The defect field is regarded as a complex system of the union of the real sets and null sets, its main characteristics depending on the stratum hypothesis about the activities of the subsystems of the highest stratum described by ordered parameters. The fluctuation of ordered parameters is demonstrated by means of the projection operator method. The constitutive equation with ordered parameters for the meso-defect evolutionary state of viscoelastic material with defects is deduced from the nonlinear rheological dynamic approach, and its solution is obtained.展开更多
In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coeffi...In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.展开更多
Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:no...Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.展开更多
The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is develop...The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is developed according to Hamilton principle. The Galerkin method is adopted to discretize the partial differential equations to the ordinary differential equations. The method of multiple scales and the singularity theory are utilized to analyze the stability and bifurcation of the trivial and non-trivial solutions. The transition sets and bifurcation diagrams are obtained both in the unfolding parameter space and physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and verify the stability and local bifurcation analyses. The critical thermal rates are obtained both by the numerical simulation and the local bifurcation analysis. The natural frequency of lateral vibration decreases as the mean fluid velocity or the thermal rate increases according to the numerical results. The present work can provide valuable information for the design of the pipeline and controllers to prevent structural instability.展开更多
A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range p...A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.展开更多
A simplified dynamic model of a dish antenna in satellite is established in this article.The modelcan be easily used to analyze the dynamic behaviour of the antenna structure.In terms of the simplifiedmodel,effects on...A simplified dynamic model of a dish antenna in satellite is established in this article.The modelcan be easily used to analyze the dynamic behaviour of the antenna structure.In terms of the simplifiedmodel,effects on dynamic characters due to the disorder of parameters are investigated in details.Thefrequencies calculated by the simplified model accord with those computed by ANSYS.Based on the modeshapes of disordered and perfect structure,the influence law and varying trend of dynamic characters ofantenna structures in satellites produced by stiffness and mass of antenna ribs,stiffness of antenna mem-branes and angles between adjacent ribs,are obtained.The analyses in the paper indicate that the effectsby disordered parameters can not be ignored in the dynamic analysis of such structures.展开更多
An artificial localized corrosion system is assembled and some parameters related to the localized corrosion in active dissolution state (i.e., non-passive state) have been studied. The results showed that the develop...An artificial localized corrosion system is assembled and some parameters related to the localized corrosion in active dissolution state (i.e., non-passive state) have been studied. The results showed that the developed electrochemical system can satisfactorily imitate a naturally formed localized corrosion and the coupling current can indicate the maximum localized propagating rate. In this artificial system, the anodic dissolution reaction followed the auto-catalytic mechanism. The localized corrosion current density was dependent on the area ratio R of the cathode to the occluded anode. While R was equal to or more than 6, the coupling current reached at a maximum value and did not alter with the increase in R-value. Therefore, R=7 is chosen as one of these optimum parameters used in constructing the system, with which the biggest galvanic current might be obtained. In contrast, the thickness of the polymer filler separating the occluded anode area from the bulk electrolyte solution and the volume of the occluded anode area did not affect the corrosion current obviously. They might affect the response time to approach a steady state.展开更多
A new method for structural physical parameter identification is proposed for linear structure.Firstly,a linear structural identification model was obtained based on a series of transformation of the dynamic character...A new method for structural physical parameter identification is proposed for linear structure.Firstly,a linear structural identification model was obtained based on a series of transformation of the dynamic characteristic equation.Then the posterior distribution of the model is obtained by the Bayesian updating theory.Using the structural modal parameters and considering their randomness,the structural stiffness parameter is obtained from the conditional posterior distribution of the linear structural identification model.The Gibbs sampling based on the Markov Chain Monte Carlo(MCMC)method is employed during the process.In order to illustrate the proposed method,a 3-DOF linear shear building is used as an example to detect and quantify its damage based on model data measured before and after a severe loading event.The research shows that damage level and locations can be identified with little error by using proposed method.展开更多
In this paper, we introduce the definition of a multi-parameter fractional Lévy process and its local time, and show its decomposition. Using the decomposition, we prove existence and joint continuity of its loca...In this paper, we introduce the definition of a multi-parameter fractional Lévy process and its local time, and show its decomposition. Using the decomposition, we prove existence and joint continuity of its local time.展开更多
基金Project(2004F052) supported by the Education Department of Liaoning Province,China
文摘By using the widely used JOHNSON-COOK model and the gradient-dependent plasticity to consider microstructural effect beyond the occurrence of shear strain localization,the distributions of local plastic shear strain and deformation in adiabatic shear band(ASB)were analyzed.The peak local plastic shear strain is proportional to the average plastic shear strain,while it is inversely proportional to the critical plastic shear strain corresponding to the peak flow shear stress.The relative plastic shear deformation between the top and base of ASB depends on the thickness of ASB and the average plastic shear strain.A parametric study was carried out to study the influence of constitutive parameters on shear strain localization.Higher values of static shear strength and work to heat conversion factor lead to lower critical plastic shear strain so that the shear localization is more apparent at the same average plastic shear strain.Higher values of strain-hardening exponent,strain rate sensitive coefficient,melting point,thermal capacity and mass density result in higher critical plastic shear strain,leading to less apparent shear localization at the same average plastic shear strain.The strain rate sensitive coefficient has a minor influence on the critical plastic shear strain,the distributions of local plastic shear strain and deformation in ASB.The effect of strain-hardening modulus on the critical plastic shear strain is not monotonous.When the maximum critical plastic shear strain is reached,the least apparent shear localization occurs.
基金supported by National Natural Science Foundation of China(62394343)Major Program of Qingyuan Innovation Laboratory(00122002)+1 种基金Major Science and Technology Projects of Longmen Laboratory(231100220600)Shanghai Committee of Science and Technology(23ZR1416000)and Shanghai AI Lab.
文摘The optimization of process parameters in polyolefin production can bring significant economic benefits to the factory.However,due to small data sets,high costs associated with parameter verification cycles,and difficulty in establishing an optimization model,the optimization process is often restricted.To address this issue,we propose using a transfer learning Bayesian optimization strategy to improve the efficiency of parameter optimization while minimizing resource consumption.Specifically,we leverage Gaussian process(GP)regression models to establish an integrated model that incorporates both source and target grade production task data.We then measure the similarity weights of each model by comparing their predicted trends,and utilize these weights to accelerate the solution of optimal process parameters for producing target polyolefin grades.In order to enhance the accuracy of our approach,we acknowledge that measuring similarity in a global search space may not effectively capture local similarity characteristics.Therefore,we propose a novel method for transfer learning optimization that operates within a local space(LSTL-PBO).This method employs partial data acquired through random sampling from the target task data and utilizes Bayesian optimization techniques for model establishment.By focusing on a local search space,we aim to better discern and leverage the inherent similarities between source tasks and the target task.Additionally,we incorporate a parallel concept into our method to address multiple local search spaces simultaneously.By doing so,we can explore different regions of the parameter space in parallel,thereby increasing the chances of finding optimal process parameters.This localized approach allows us to improve the precision and effectiveness of our optimization process.The performance of our method is validated through experiments on benchmark problems,and we discuss the sensitivity of its hyperparameters.The results show that our proposed method can significantly improve the efficiency of process parameter optimization,reduce the dependence on source tasks,and enhance the method's robustness.This has great potential for optimizing processes in industrial environments.
基金Project supported by the National Natural Science Foundation of China (Grant No 10774103)the Doctoral Education Fund of the Education Ministry of China (Grant No 20050610011)
文摘By simulating the electron paramagnetic resonance (EPR) and optical spectra on the basis of the 120 × 120 complete energy matrix, this paper determines the local lattice structure parameters R1 and R2 for MCl:V2+ (M=Na, K, Rb) systems at 77K, 195 K and RT (room temperature 295 K or 302 K), respectively. The theoretical results indicate that there exists a compressed distortion in MCl:V2+ systems. Meanwhile, it finds that the structure parameters R1, R2 and |△R|( = R1 - R2) increase with the rising temperature. Subsequently, from the analysis it concludes that the relation of EPR parameter D vs. △R is approximately linear. Finally, the effects of orbital reduction factor k on the g factors for the three systems have been discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.11274235 and 11104190)the Doctoral Education Fund of Education Ministry of China(Grant No.20110181120112)
文摘The inter-relation between zero-field splitting (ZFS) parameters and local lattice structures of the (CrSe4)6 clusters in ZnSe semiconductors has been established by using the complete diagonalization (of the energy matrix) method. On the basis of this, the local lattice distortions, the ZFS parameters D, a, F and the optical spectrum for Cr2+ ions doped into ZnSe are theoretically investigated, and the contributions of the spin singlets have been taken into account. The calculated ZFS parameters are in good agreement with the experimental values. From our calculations, the tetragonal distortion parameters AR = 0.091A and Aθ = 4.28° of Cr2+ in ZnSe are acquired, and the results suggest that there exists a tetragonal expansion distortion for the local lattice structure of (CrSe4)6- clusters in ZnSe crystals. The influence of the spin singlets on ZFS parameters is also discussed, indicating that the contributions to ZFS parameters a and F cannot be ignored.
基金Projects supported by the Natural Science Foundation of Shaanxi Province,China (Grant No.2010JM1015)the Special Scientific Program of the Education Department of Shaanxi Province,China (Grant No.11JK0537)the Baoji University of Arts and Sciences Key Research,China (Grant No.ZK0842)
文摘The quantitative relationship between the spin Hamiltonian parameters (D, g|| Ag) and the crystal structure parameters for the Cr3+-Vzη tetragonal defect centre in a Cr3+ :KZnF3 crystal is established by using the superposition model. On the above basis, the local structure distortion and the spin Hamiltonian parameter for the Cr3+-Vzn tetragonal defect centre in the KZnF3 crystal are systematically investigated using the complete diagonalization method. It is found that the Vzn vacancy and the differences in mass, radius and charge between the Cr3+ and the Zn2+ ions induce the local lattice distortion of the Cr3+ centre ions in the KZnF3 crystal. The local lattice distortion is shown to give rise to the tetragonal crystal field, which in turn results in the tetragonal zero-field splitting parameter D and the anisotropic g factor Ag. We find that the ligand F- ion along I001] and the other five F- ions move towards the central Cr3+ by distances of A1 = 0.0121 nm and A2 = 0.0026 nm, respectively. Our approach takes into account the spin-rbit interaction as well as the spin-spin, spin other-orbit, and orbit-rbit interactions omitted in the previous studies. It is found that for the Cr3+ ions in the Cr3+:KZnF3 crystal, although the spin-rbit mechanism is the most important one, the contribution to the spin Hamiltonian parameters from the other three mechanisms, including spin- spin, spin-other-orbit, and orbit-orbit magnetic interactions, is appreciable and should not be omitted, especially for the zero-field splitting (ZFS) parameter D.
基金supported by the Science and Technology Foundation of Shaanxi Province,China (Grant No 2006K04-G29)the National Defense Foundation of China (Grant No EP060302)the Key Research Foundation of Baoji University of Arts and Sciences,China (Grant No ZK0842)
文摘The local structure distortion, the spin Hamiltonian (SH) parameters, and the electric fine structure of the ground state for Mn^2+ (3d^5) ion in ZnO crystals are systematically investigated, where spin-spin (SS), spin-other-orbit (SOO) and orbit-orbit (OO) magnetic interactions, besides the well-known spin-orbit (SO) coupling, are taken into account for the first time, by using the complete diagonalization method. The theoretical results of the second-order zerofield splitting (ZFS) parameter D, the fourth-order ZFS parameter (a-F), the Zeeman g-factors: g// and g⊥, and the energy differences of the ground state: δ1 and δ2 for Mn^2+ in Mn^2+: ZnO are in good agreement with experimental measurements when the three O^2- ions below the Mn^2+ ion rotate by 1.085° away from the [111]-axis. Hence, the local structure distortion effect plays an important role in explaining the spectroscopic properties of Mn^2+ ions in Mn^2+: ZnO crystals. It is found for Mn^2+ ions in Mn^2+: ZnO crystals that although the SO mechanism is the most important one, the contributions to the SH parameters, made by other four mechanisms, i.e. SS, SOO, OO, and SO-SS-SOO-OO mechanisms, are significant and should not be omitted, especially for calculating ZFS parameter D.
基金National Natural Science Foundation of China(No.51205217)the Project of Shandong Province Higher Educational Science and Technology Program,China(No.J10LD13)+1 种基金the Taishan Scholar Project of Shandong Province,China(No.ts 201511038)the Key Research Project of Shandong Province,China(No.2016ZDJS02A15)
文摘In rotational incremental sheet forming( RISF) process,the friction heating of rotational tool could lead to local temperature rise of the sheet and cause the improvement of sheet's formability.Lightweight metal,such as magnesium alloy,could be deformed by RISF without additional heating. The objective of this study is to investigate the effects of forming parameters,namely,tool rotational speed,feed-rate,step size and wall angle,on the local temperature rise. Using response surface methodology and central composite design( CCD) experimental design,the significance,sequence of parameters and regression models would be analyzed with AZ31 B as the experimental material,and 3D response surface plots would be shown. Combined with actual processing conditions,the measures to improve the local temperature rise by modifying each parameter would be discussed in the end. The results showed that hierarchy of the parameters with respect to the significance of their effects on the local temperature at the side wall was: feed-rate,step size,and rotational speed,while at the bottom it was: feed-rate,step size,wall angle, and rotational speed, and no significant interaction appeared. It was found that the most significant parameter was not rotational speed,but feed-rate,followed by step size,for both test positions. In addition, the local temperature would increase by elevating step size,wall angle,rotating rate,and bringing down of feed-rate.
基金Project supported by the National Natural Science Foundation of Shandong Province(No.ZR2013AL017)the National Natural Science Foundation of China(No.11272357)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A)
文摘The parametric excited vibration of a pipe under thermal loading may occur because the fluid is often transported heatedly. The effects of thermal loading on the pipe stability and local bifurcations have rarely been studied. The stability and the local bifurcations of the lateral parametric resonance of the pipe induced by the pulsating fluid velocity and the thermal loading are studied. A mathematical model for a simply supported pipe is developed according to the Hamilton principle. Two partial differential equations describing the lateral and longitudinal vibration are obtained. The singularity theory is utilized to anMyze the stability and the bifurcation of the system solutions. The transition sets and the bifurcation diagrams are obtained both in the unfolding parameter space and the physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The frequency response and the relationship between the critical thermal rate and the pulsating fluid velocity are obtained. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and the stability and local bifurcation analyses. It also confirms the existence of the chaos. The presented work can provide valuable information for the design of the pipeline and the controllers to prevent the structural instability.
文摘By analyzing the optical spectra and electron paramagnetic resonance parameter D, the local structure distortion of (NiF6)4- clusters in AMF3 (A=K, Rb; M=Zn, Cd, Ca) and K2ZnF4 series are studied using the complete energy matrix based on the double spin-orbit coupling parameter model for configuration ions in a tetragonal ligand field. The results indicate that the contribution of ligand to spin-orbit coupling interaction should be considered for our studied systems. Moreover, the relationships between D and the spin-obit coupling coefficients as well as the average parameter and the divergent parameter are discussed.
基金The project supported by National Natural Science Foundation of China(NNSF 19632002).
文摘Based on the experimental results of local temperature field formed in the evolution period of defects, the defect field is defined by this internal temperature field. The evolutionary processes of statistically correlative meso-scopic defects are analysed with the growth rate and nucleation rate of the meso-defect, and it is deemed that the dynamic failure process of the viscoelastic material with defects can be quantitatively described by the normal method of the procedure of heat wave transmission. The defect field is regarded as a complex system of the union of the real sets and null sets, its main characteristics depending on the stratum hypothesis about the activities of the subsystems of the highest stratum described by ordered parameters. The fluctuation of ordered parameters is demonstrated by means of the projection operator method. The constitutive equation with ordered parameters for the meso-defect evolutionary state of viscoelastic material with defects is deduced from the nonlinear rheological dynamic approach, and its solution is obtained.
文摘In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.
文摘Assessment of the Hubble parameter as an indicator of the expansion rate of the universe holds a central position in the field of astronomy. From its initial estimate of about 500 km<span style="white-space:nowrap;">⋅</span>sec<sup>-1</sup><span style="white-space:nowrap;">⋅</span>parsc<sup>-1</sup>, this value had been steadily amended as the observational tools became more accurate and precise. Despite this, a gap remains between the value of observations relating to local and nonlocal estimations of the Hubble parameter that gave rise to what became known as the Hubble tension. This tension is addressed here while dealing with space fabric as a cosmological fluid that undergoes transition.
基金Supported by the Natural Science Foundation of Shandong Province of China(No.ZR2013AL017)the Fundamental Research Funds for the Central Universities of China(No.11CX04049A,No.12CX04071A)
文摘The stability and local bifurcation of the lateral parameter-excited resonance of pipes induced by the pulsating fluid velocity and thermal load are studied. A mathematical model for a simply supported pipe is developed according to Hamilton principle. The Galerkin method is adopted to discretize the partial differential equations to the ordinary differential equations. The method of multiple scales and the singularity theory are utilized to analyze the stability and bifurcation of the trivial and non-trivial solutions. The transition sets and bifurcation diagrams are obtained both in the unfolding parameter space and physical parameter space, which can reveal the relationship between the thermal field parameter and the dynamic behaviors of the pipe. The numerical results demonstrate the accuracy of the single-mode expansion of the solution and verify the stability and local bifurcation analyses. The critical thermal rates are obtained both by the numerical simulation and the local bifurcation analysis. The natural frequency of lateral vibration decreases as the mean fluid velocity or the thermal rate increases according to the numerical results. The present work can provide valuable information for the design of the pipeline and controllers to prevent structural instability.
基金supported by the National Natural Science Foundation of China(62022091,61921001).
文摘A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.
基金Supported by the Innovative Fund of China Aerospace Science and Technology Corporation (CASC0113)
文摘A simplified dynamic model of a dish antenna in satellite is established in this article.The modelcan be easily used to analyze the dynamic behaviour of the antenna structure.In terms of the simplifiedmodel,effects on dynamic characters due to the disorder of parameters are investigated in details.Thefrequencies calculated by the simplified model accord with those computed by ANSYS.Based on the modeshapes of disordered and perfect structure,the influence law and varying trend of dynamic characters ofantenna structures in satellites produced by stiffness and mass of antenna ribs,stiffness of antenna mem-branes and angles between adjacent ribs,are obtained.The analyses in the paper indicate that the effectsby disordered parameters can not be ignored in the dynamic analysis of such structures.
文摘An artificial localized corrosion system is assembled and some parameters related to the localized corrosion in active dissolution state (i.e., non-passive state) have been studied. The results showed that the developed electrochemical system can satisfactorily imitate a naturally formed localized corrosion and the coupling current can indicate the maximum localized propagating rate. In this artificial system, the anodic dissolution reaction followed the auto-catalytic mechanism. The localized corrosion current density was dependent on the area ratio R of the cathode to the occluded anode. While R was equal to or more than 6, the coupling current reached at a maximum value and did not alter with the increase in R-value. Therefore, R=7 is chosen as one of these optimum parameters used in constructing the system, with which the biggest galvanic current might be obtained. In contrast, the thickness of the polymer filler separating the occluded anode area from the bulk electrolyte solution and the volume of the occluded anode area did not affect the corrosion current obviously. They might affect the response time to approach a steady state.
文摘A new method for structural physical parameter identification is proposed for linear structure.Firstly,a linear structural identification model was obtained based on a series of transformation of the dynamic characteristic equation.Then the posterior distribution of the model is obtained by the Bayesian updating theory.Using the structural modal parameters and considering their randomness,the structural stiffness parameter is obtained from the conditional posterior distribution of the linear structural identification model.The Gibbs sampling based on the Markov Chain Monte Carlo(MCMC)method is employed during the process.In order to illustrate the proposed method,a 3-DOF linear shear building is used as an example to detect and quantify its damage based on model data measured before and after a severe loading event.The research shows that damage level and locations can be identified with little error by using proposed method.
基金supported by the National Natural Science Foundation of China (No. 10871177)the Ph. D.Programs Foundation of Ministry of Education of China (No. 20060335032)the Natural Science Foundation of Zhejiang Province of China (No. Y7080044)
文摘In this paper, we introduce the definition of a multi-parameter fractional Lévy process and its local time, and show its decomposition. Using the decomposition, we prove existence and joint continuity of its local time.