期刊文献+
共找到596篇文章
< 1 2 30 >
每页显示 20 50 100
Local binary pattern-based reversible data hiding 被引量:4
1
作者 Monalisa Sahu Neelamadhab Padhy +1 位作者 Sasanko Sekhar Gantayat Aditya Kumar Sahu 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第4期695-709,共15页
A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided ... A novel local binary pattern-based reversible data hiding(LBP-RDH)technique has been suggested to maintain a fair symmetry between the perceptual transparency and hiding capacity.During embedding,the image is divided into various 3×3 blocks.Then,using the LBP-based image descriptor,the LBP codes for each block are computed.Next,the obtained LBP codes are XORed with the embedding bits and are concealed in the respective blocks using the proposed pixel readjustment process.Further,each cover image(CI)pixel produces two different stego-image pixels.Likewise,during extraction,the CI pixels are restored without the loss of a single bit of information.The outcome of the proposed technique with respect to perceptual transparency measures,such as peak signal-to-noise ratio and structural similarity index,is found to be superior to that of some of the recent and state-of-the-art techniques.In addition,the proposed technique has shown excellent resilience to various stego-attacks,such as pixel difference histogram as well as regular and singular analysis.Besides,the out-off boundary pixel problem,which endures in most of the contemporary data hiding techniques,has been successfully addressed. 展开更多
关键词 hiding capacity(HC) local binary pattern(lbp) peak signal-to-noise ratio(PSNR) reversible data hiding
下载PDF
Vehicle detection algorithm based on codebook and local binary patterns algorithms 被引量:1
2
作者 许雪梅 周立超 +1 位作者 墨芹 郭巧云 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期593-600,共8页
Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establis... Detecting the moving vehicles in jittering traffic scenes is a very difficult problem because of the complex environment.Only by the color features of the pixel or only by the texture features of image cannot establish a suitable background model for the moving vehicles. In order to solve this problem, the Gaussian pyramid layered algorithm is proposed, combining with the advantages of the Codebook algorithm and the Local binary patterns(LBP) algorithm. Firstly, the image pyramid is established to eliminate the noises generated by the camera shake. Then, codebook model and LBP model are constructed on the low-resolution level and the high-resolution level of Gaussian pyramid, respectively. At last, the final test results are obtained through a set of operations according to the spatial relations of pixels. The experimental results show that this algorithm can not only eliminate the noises effectively, but also save the calculating time with high detection sensitivity and high detection accuracy. 展开更多
关键词 background modeling Gaussian pyramid CODEBOOK local binary patterns(lbp moving vehicle detection
下载PDF
A Novel Tracking-by-Detection Method with Local Binary Pattern and Kalman Filter 被引量:1
3
作者 Zhongli Wang Chunxiao Jia +6 位作者 Baigen Cai Litong Fan Chuanqi Tao Zhiyi Zhang Yinling Wang Min Zhang Guoyan Lyu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期74-87,共14页
Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experim... Tracking-Learning-Detection( TLD) is an adaptive tracking algorithm,which tracks by learning the appearance of the object as the video progresses and shows a good performance in long-term tracking task.But our experiments show that under some scenarios,such as non-uniform illumination changing,serious occlusion,or motion-blurred,it may fails to track the object. In this paper,to surmount some of these shortages,especially for the non-uniform illumination changing,and give full play to the performance of the tracking-learning-detection framework, we integrate the local binary pattern( LBP) with the cascade classifiers,and define a new classifier named ULBP( Uniform Local Binary Pattern) classifiers. When the object appearance has rich texture features,the ULBP classifier will work instead of the nearest neighbor classifier in TLD algorithm,and a recognition module is designed to choose the suitable classifier between the original nearest neighbor( NN) classifier and the ULBP classifier. To further decrease the computing load of the proposed tracking approach,Kalman filter is applied to predict the searching range of the tracking object.A comprehensive study has been conducted to confirm the effectiveness of the proposed algorithm (TLD _ULBP),and different multi-property datasets were used. The quantitative evaluations show a significant improvement over the original TLD,especially in various lighting case. 展开更多
关键词 Tracking-Learning-Detection (TLD) local binary pattern (lbp) Kalman filter
下载PDF
Multi-Level Fusion in Ultrasound for Cancer Detection Based on Uniform LBP Features 被引量:1
4
作者 Diyar Qader Zeebaree Adnan Mohsin Abdulazeez +2 位作者 Dilovan Asaad Zebari Habibollah Haron Haza Nuzly Abdull Hamed 《Computers, Materials & Continua》 SCIE EI 2021年第3期3363-3382,共20页
Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve ... Collective improvement in the acceptable or desirable accuracy level of breast cancer image-related pattern recognition using various schemes remains challenging.Despite the combination of multiple schemes to achieve superior ultrasound image pattern recognition by reducing the speckle noise,an enhanced technique is not achieved.The purpose of this study is to introduce a features-based fusion scheme based on enhancement uniform-Local Binary Pattern(LBP)and filtered noise reduction.To surmount the above limitations and achieve the aim of the study,a new descriptor that enhances the LBP features based on the new threshold has been proposed.This paper proposes a multi-level fusion scheme for the auto-classification of the static ultrasound images of breast cancer,which was attained in two stages.First,several images were generated from a single image using the pre-processing method.Themedian andWiener filterswere utilized to lessen the speckle noise and enhance the ultrasound image texture.This strategy allowed the extraction of a powerful feature by reducing the overlap between the benign and malignant image classes.Second,the fusion mechanism allowed the production of diverse features from different filtered images.The feasibility of using the LBP-based texture feature to categorize the ultrasound images was demonstrated.The effectiveness of the proposed scheme is tested on 250 ultrasound images comprising 100 and 150 benign and malignant images,respectively.The proposed method achieved very high accuracy(98%),sensitivity(98%),and specificity(99%).As a result,the fusion process that can help achieve a powerful decision based on different features produced from different filtered images improved the results of the new descriptor of LBP features in terms of accuracy,sensitivity,and specificity. 展开更多
关键词 Breast cancer ultrasound image local binary pattern feature extraction noise reduction filters FUSION
下载PDF
An Improved Real-Time Face Recognition System at Low Resolution Based on Local Binary Pattern Histogram Algorithm and CLAHE 被引量:2
5
作者 Kamal Chandra Paul Semih Aslan 《Optics and Photonics Journal》 2021年第4期63-78,共16页
This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><... This research presents an improved real-time face recognition system at a low<span><span><span style="font-family:" color:red;"=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">resolution of 15 pixels with pose and emotion and resolution variations. We have designed our datasets named LRD200 and LRD100, which have been used for training and classification. The face detection part uses the Viola-Jones algorithm, and the face recognition part receives the face image from the face detection part to process it using the Local Binary Pattern Histogram (LBPH) algorithm with preprocessing using contrast limited adaptive histogram equalization (CLAHE) and face alignment. The face database in this system can be updated via our custom-built standalone android app and automatic restarting of the training and recognition process with an updated database. Using our proposed algorithm, a real-time face recognition accuracy of 78.40% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 98.05% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px have been achieved using the LRD200 database containing 200 images per person. With 100 images per person in the database (LRD100) the achieved accuracies are 60.60% at 15</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px and 95% at 45</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">px respectively. A facial deflection of about 30</span></span></span><span><span><span><span><span style="color:#4F4F4F;font-family:-apple-system, " font-size:16px;white-space:normal;background-color:#ffffff;"="">°</span></span><span> on either side from the front face showed an average face recognition precision of 72.25%-81.85%. This face recognition system can be employed for law enforcement purposes, where the surveillance camera captures a low-resolution image because of the distance of a person from the camera. It can also be used as a surveillance system in airports, bus stations, etc., to reduce the risk of possible criminal threats.</span></span></span></span> 展开更多
关键词 Face Detection Face Recognition Low Resolution feature Extraction Security System Access Control System Viola-Jones Algorithm lbpH local binary pattern Histogram
下载PDF
A Local Binary Pattern-Based Method for Color and Multicomponent Texture Analysis
6
作者 Yao Taky Alvarez Kossonou Alain Clément +1 位作者 Bouchta Sahraoui Jérémie Zoueu 《Journal of Signal and Information Processing》 2020年第3期58-73,共16页
Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="fo... Local Binary Patterns (LBPs) have been highly used in texture classification <span style="font-family:Verdana;">for their robustness, their ease of implementation an</span><span style="font-family:Verdana;">d their low computational</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">cost. Initially designed to deal with gray level images, several methods based on them in the literature have been proposed for images having more than one spectral band. To achieve it, whether assumption using color information or combining spectral band two by two was done. Those methods use micro </span><span style="font-family:Verdana;">structures as texture features. In this paper, our goal was to design texture features which are relevant to color and multicomponent texture analysi</span><span style="font-family:Verdana;">s withou</span><span style="font-family:Verdana;">t any assumption.</span></span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Based on methods designed for gray scale images, we find the combination of micro and macro structures efficient for multispectral texture analysis. The experimentations were carried out on color images from Outex databases and multicomponent images from red blood cells captured using a multispectral microscope equipped with 13 LEDs ranging </span><span style="font-family:Verdana;">from 375 nm to 940 nm. In all achieved experimentations, our propos</span><span style="font-family:Verdana;">al presents the best classification scores compared to common multicomponent LBP methods.</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.81%, 100.00%,</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">99.07% and 97.67% are</span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">maximum scores obtained with our strategy respectively applied to images subject to rotation, blur, illumination variation and the multicomponent ones.</span> 展开更多
关键词 Multispectral Images local binary patterns (lbp) Texture Analysis Rotation Invariance Illumination Variation Blurring Invariance
下载PDF
Local Binary Patterns and Its Variants for Finger Knuckle Print Recognition in Multi-Resolution Domain
7
作者 D. R. Arun C. Christopher Columbus K. Meena 《Circuits and Systems》 2016年第10期3142-3149,共8页
Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach... Finger Knuckle Print biometric plays a vital role in establishing security for real-time environments. The success of human authentication depends on high speed and accuracy. This paper proposed an integrated approach of personal authentication using texture based Finger Knuckle Print (FKP) recognition in multiresolution domain. FKP images are rich in texture patterns. Recently, many texture patterns are proposed for biometric feature extraction. Hence, it is essential to review whether Local Binary Patterns or its variants perform well for FKP recognition. In this paper, Local Directional Pattern (LDP), Local Derivative Ternary Pattern (LDTP) and Local Texture Description Framework based Modified Local Directional Pattern (LTDF_MLDN) based feature extraction in multiresolution domain are experimented with Nearest Neighbor and Extreme Learning Machine (ELM) Classifier for FKP recognition. Experiments were conducted on PolYU database. The result shows that LDTP in Contourlet domain achieves a promising performance. It also proves that Soft classifier performs better than the hard classifier. 展开更多
关键词 Biometrics Finger Knuckle Print Contourlet Transform local binary pattern (lbp) local Directional pattern (LDP) local Derivative Ternary pattern (LDTP) local Texture Description Framework Based Modified local Directional pattern (LTDF_MLDN) Nearest Neighbor (NN) Classifier Extreme Learning Machine (ELM) Classifier
下载PDF
Android Malware Detection Using Local Binary Pattern and Principal Component Analysis
8
作者 Qixin Wu Zheng Qin +3 位作者 Jinxin Zhang Hui Yin Guangyi Yang Kuangsheng Hu 《国际计算机前沿大会会议论文集》 2017年第1期63-66,共4页
Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applicatio... Nowadays,analysis methods based on big data have been widely used in malicious software detection.Since Android has become the dominator of smartphone operating system market,the number of Android malicious applications are increasing rapidly as well,which attracts attention of malware attackers and researchers alike.Due to the endless evolution of the malware,it is critical to apply the analysis methods based on machine learning to detect malwares and stop them from leakaging our privacy information.In this paper,we propose a novel Android malware detection method based on binary texture feature recognition by Local Binary Pattern and Principal Component Analysis,which can visualize malware and detect malware accurately.Also,our method analyzes malware binary directly without any decompiler,sandbox or virtual machines,which avoid time and resource consumption caused by decompiler or monitor in this process.Experimentation on 5127 benigns and 5560 malwares shows that we obtain a detection accuracy of 90%. 展开更多
关键词 ANDROID MALWARE detection binary TEXTURE featurE local binary pattern Principal component analysis
下载PDF
Retrieval of High Resolution Satellite Images Using Texture Features 被引量:1
9
作者 Samia Bouteldja Assia Kourgli 《Journal of Electronic Science and Technology》 CAS 2014年第2期211-215,共5页
In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture ... In this research, a content-based image retrieval (CBIR) system for high resolution satellite images has been developed by using texture features. The proposed approach uses the local binary pattern (LBP) texture feature and a block based scheme. The query and database images are divided into equally sized blocks, from which LBP histograms are extracted. The block histograms are then compared by using the Chi-square distance. Experimental results show that the LBP representation provides a powerful tool for high resolution satellite images (HRSI) retrieval. 展开更多
关键词 Content-based image retrieval high resolution satellite imagery local binary pattern texture feature extraction
下载PDF
An automated detection of glaucoma using histogram features
10
作者 Karthikeyan Sakthivel Rengarajan Narayanan 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第1期194-200,共7页
Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it caus... Glaucoma is a chronic and progressive optic neurodegenerative disease leading to vision deterioration and in most cases produce increased pressure within the eye. This is due to the backup of fluid in the eye; it causes damage to the optic nerve. Hence, early detection diagnosis and treatment of an eye help to prevent the loss of vision. In this paper, a novel method is proposed for the early detection of glaucoma using a combination of magnitude and phase features from the digital fundus images. Local binary patterns(LBP) and Daugman’s algorithm are used to perform the feature set extraction.The histogram features are computed for both the magnitude and phase components. The Euclidean distance between the feature vectors are analyzed to predict glaucoma. The performance of the proposed method is compared with the higher order spectra(HOS)features in terms of sensitivity, specificity, classification accuracy and execution time. The proposed system results 95.45% output for sensitivity, specificity and classification. Also, the execution time for the proposed method takes lesser time than the existing method which is based on HOS features. Hence, the proposed system is accurate, reliable and robust than the existing approach to predict the glaucoma features. 展开更多
关键词 Daugman's algorithm Euclidean distance GLAUCOMA higher order spectra histogram features local binary patterns
下载PDF
Product Image Classification Based on Fusion Features
11
作者 杨晓慧 刘静静 杨利军 《Chinese Quarterly Journal of Mathematics》 2015年第3期429-441,共13页
Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images cl... Two key challenges raised by a product images classification system are classification precision and classification time. In some categories, classification precision of the latest techniques, in the product images classification system, is still low. In this paper, we propose a local texture descriptor termed fan refined local binary pattern, which captures more detailed information by integrating the spatial distribution into the local binary pattern feature. We compare our approach with different methods on a subset of product images on Amazon/e Bay and parts of PI100 and experimental results have demonstrated that our proposed approach is superior to the current existing methods. The highest classification precision is increased by 21% and the average classification time is reduced by 2/3. 展开更多
关键词 product image CLASSIFICATION FAN refined local binary pattern(FRlbp) PYRAMID HISTOGRAM of orientated gradients(PHOG) FUSION features
下载PDF
基于LBP值对空间统计特征的纹理描述符 被引量:19
12
作者 徐少平 刘小平 +2 位作者 李春泉 胡凌燕 杨晓辉 《模式识别与人工智能》 EI CSCD 北大核心 2013年第8期769-776,共8页
针对基于内容图像检索应用背景下局部二值模式(LBP)描述符缺乏空间描述能力及所需特征矢量维数较长的不足,提出一种基于LBP值对空间统计特征构建的改进纹理描述符(ILBP).ILBP描述符首先利用LBP微模式编码方法将原始图像转换为LBP伪灰度... 针对基于内容图像检索应用背景下局部二值模式(LBP)描述符缺乏空间描述能力及所需特征矢量维数较长的不足,提出一种基于LBP值对空间统计特征构建的改进纹理描述符(ILBP).ILBP描述符首先利用LBP微模式编码方法将原始图像转换为LBP伪灰度图像,然后再提取出多个关于LBP值对空间分布关系统计值构成描述图像特征的特征矢量.在基于内容的图像检索原型测试平台上完成大量实验.实验结果表明,与LBP及其各类变种描述符相比,ILBP描述符在进一步增强LBP描述符描述能力的同时大幅度压缩特征矢量维数,具有更好的查询正确率和查询效率. 展开更多
关键词 基于内容的图像检索 局部二值模式(lbp) 局部二值模式伪图像 统计特征 查询正确率
下载PDF
使用多尺度LBP特征描述与识别人脸 被引量:52
13
作者 王玮 黄非非 +1 位作者 李见为 冯海亮 《光学精密工程》 EI CAS CSCD 北大核心 2008年第4期696-705,共10页
提出了一种基于多尺度LBP特征的人脸描述与识别算法。对原始人脸图像进行二级小波分解,并采用LBP算子分别计算两幅低频逼近图像的LBP特征谱;将LBP特征谱划分为若干个互不重叠的特征区域,然后分别进行直方图统计。最后,将所有区域的LBP... 提出了一种基于多尺度LBP特征的人脸描述与识别算法。对原始人脸图像进行二级小波分解,并采用LBP算子分别计算两幅低频逼近图像的LBP特征谱;将LBP特征谱划分为若干个互不重叠的特征区域,然后分别进行直方图统计。最后,将所有区域的LBP直方图序列连接起来得到多尺度LBP特征,将其作为人脸的鉴别特征用于分类识别。所提出算法在ORL人脸数据库中取得了高达99%的人脸识别率。实验分析表明,多尺度LBP特征具有较强的人脸图像描述能力和可鉴别性,且对人脸表情及位置的变化具有较高的鲁棒性。 展开更多
关键词 人脸识别 多尺度分析 lbp算子 直方图
下载PDF
基于完整LBP特征的人脸识别 被引量:31
14
作者 袁宝华 王欢 任明武 《计算机应用研究》 CSCD 北大核心 2012年第4期1557-1559,共3页
提出一种基于完整局部二值模式(CLBP)进行人脸识别的方法,CLBP算子包括三个部分:中心像素的LBP(CLBP_C)、符号部分的LBP(CLBP_S)、数值部分的LBP(CLBP_M)。该方法首先采用CLBP算子提取人脸灰度图像的直方图;然后融合成CLBP直方图,进行... 提出一种基于完整局部二值模式(CLBP)进行人脸识别的方法,CLBP算子包括三个部分:中心像素的LBP(CLBP_C)、符号部分的LBP(CLBP_S)、数值部分的LBP(CLBP_M)。该方法首先采用CLBP算子提取人脸灰度图像的直方图;然后融合成CLBP直方图,进行直方图相似性比较;最后根据最近邻原则进行识别。在ORL和YALE标准人脸数据库上的实验表明,该方法得到的结果比LBP效果更好,鲁棒性更高。 展开更多
关键词 完整局部二值模式 特征提取 人脸识别 局部二值模式
下载PDF
DCT和LBP特征融合的人脸识别 被引量:18
15
作者 李建科 赵保军 +1 位作者 张辉 焦继超 《北京理工大学学报》 EI CAS CSCD 北大核心 2010年第11期1355-1359,共5页
提出一种特征融合的人脸识别新方法.该方法将人脸图像中少量的低频离散余弦变换(DCT)系数用作人脸的频域特征;把人脸图像规则地分成多个子块,计算每个子块的局部二值图(LBP)编码直方图.这些子块的LBP直方图连接成一个空域全局直方图,作... 提出一种特征融合的人脸识别新方法.该方法将人脸图像中少量的低频离散余弦变换(DCT)系数用作人脸的频域特征;把人脸图像规则地分成多个子块,计算每个子块的局部二值图(LBP)编码直方图.这些子块的LBP直方图连接成一个空域全局直方图,作为人脸的描述向量.这个描述向量经过PCA降维后作为人脸的LBP特征.DCT特征和LBP特征分别归一化,然后进行特征融合.在ORL人脸库上的实验显示了所提方法比单独采用DCT或LBP特征的人脸识别有较好的性能改善. 展开更多
关键词 图像处理 人脸识别 特征融合 离散余弦变换 局部二值图
下载PDF
融合LBP和GLCM的纹理特征提取方法 被引量:23
16
作者 王国德 张培林 +1 位作者 任国全 寇玺 《计算机工程》 CAS CSCD 2012年第11期199-201,共3页
为提取有效的特征用于纹理描述和分类,提出一种融合局部二进制模式(LBP)和灰度共生矩阵(GLCM)的纹理特征提取方法。利用旋转不变的LBP算子处理纹理图像,得到LBP图像及其GLCM,采用对比度、相关性、能量和逆差矩描述图像的纹理特征。实验... 为提取有效的特征用于纹理描述和分类,提出一种融合局部二进制模式(LBP)和灰度共生矩阵(GLCM)的纹理特征提取方法。利用旋转不变的LBP算子处理纹理图像,得到LBP图像及其GLCM,采用对比度、相关性、能量和逆差矩描述图像的纹理特征。实验结果表明,与其他方法相比,该方法提取的纹理特征具有更强的纹理鉴别能力,平均分类正确率达到93%。 展开更多
关键词 纹理分析 特征提取 Haralick特征 GABOR滤波器 局部二进制模式 灰度共生矩阵
下载PDF
多级LBP直方图序列特征的人脸识别 被引量:26
17
作者 高涛 何明一 +1 位作者 戴玉超 白磷 《中国图象图形学报》 CSCD 北大核心 2009年第2期202-207,共6页
人脸识别是当前人工智能和模式识别的研究热点。基于对小波分解和局部二进制模式(LBP)分析,提出了一种多级LBP直方图的序列特征(M-HSLBP)的提取方法。2维的小波分解具有对表情变化不敏感的特点,可以很好地压缩和表征人脸图像的特征;LBP... 人脸识别是当前人工智能和模式识别的研究热点。基于对小波分解和局部二进制模式(LBP)分析,提出了一种多级LBP直方图的序列特征(M-HSLBP)的提取方法。2维的小波分解具有对表情变化不敏感的特点,可以很好地压缩和表征人脸图像的特征;LBP是一种有效的纹理描述算子,使用多级可变大小的子窗口对小波变换后的图像进行扫描,对各级子图像进行改进LBP变换并形成多级LBP直方图序列特征,这种特征既能反映人脸局部特征又能反映其整体特征。径向基网络作为分类器具有很高的推广性能,有利于大容量样本的分类。在对人脸库ORL和YEL的识别实验中,该算法识别率达到98%以上,与传统算法相比,取得了更好的识别结果。 展开更多
关键词 人脸识别 局部二进制模式 小波变换 径向基网络
下载PDF
基于LBP特征和稀疏表示的新生儿疼痛表情识别 被引量:15
18
作者 卢官明 石婉婉 +3 位作者 李旭 李晓南 陈梦莹 刘莉 《南京邮电大学学报(自然科学版)》 北大核心 2015年第1期19-25,共7页
面部表情被认为是新生儿疼痛评估的可靠指标。文中提出一种基于加权局部二元模式(LBP)特征描述符和稀疏表示分类器的新生儿疼痛表情识别方法。首先,经归一化后的面部图像采用一个特征向量来描述,这个特征向量是通过串接组合所有局部图... 面部表情被认为是新生儿疼痛评估的可靠指标。文中提出一种基于加权局部二元模式(LBP)特征描述符和稀疏表示分类器的新生儿疼痛表情识别方法。首先,经归一化后的面部图像采用一个特征向量来描述,这个特征向量是通过串接组合所有局部图像块的LBP特征图的加权直方图所得到的直方图序列。然后,采用主成分分析(PCA)方法对训练样本及测试样本图像的特征向量进行降维。最后,采用基于稀疏表示的分类器将测试样本图像的表情分为4类:平静、哭、轻度疼痛、剧烈疼痛。文中研究目的是通过利用基于计算机的图像分析技术来辅助临床医生评估新生儿疼痛。在新生儿面部图像数据库上进行的实验结果表明了该算法的有效性,表情分类的平均识别率高达84.50%。 展开更多
关键词 表情识别 新生儿 疼痛表情 局部二元模式 稀疏表示
下载PDF
人脸表情的LBP特征分析 被引量:19
19
作者 刘伟锋 李树娟 王延江 《计算机工程与应用》 CSCD 北大核心 2011年第2期149-152,共4页
为了有效提取面部表情特征,提出了一种新的基于LBP(局部二值模式)特征的人脸表情识别特征提取方法。首先用均值方差法对表情图像进行灰度规一化,通过对图像进行积分投影,定位出眉毛、眼睛、鼻和嘴巴这些关键特征点,进而划分出各特征部... 为了有效提取面部表情特征,提出了一种新的基于LBP(局部二值模式)特征的人脸表情识别特征提取方法。首先用均值方差法对表情图像进行灰度规一化,通过对图像进行积分投影,定位出眉毛、眼睛、鼻和嘴巴这些关键特征点,进而划分出各特征部件所在子区域,然后对子区域进行分块,提取各个子区域的分块LBP直方图特征。为了验证所提出的方法的合理性,最后在JAFFE表情库上进行了实验,结果表明提出的方法能够有效地描述表情的特征。 展开更多
关键词 表情识别 局部特征提取 局部二值模式
下载PDF
LBP和HOG的分层特征融合的人脸识别 被引量:71
20
作者 万源 李欢欢 +1 位作者 吴克风 童恒庆 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2015年第4期640-650,共11页
针对LBP描述子提取的纹理特征有限且不能有效地描述图像边缘和方向信息的问题,提出了LBP和HOG的分层特征融合的方法.首先利用LBP算子提取图像的分层纹理谱特征,然后利用HOG算子提取原始图像的边缘特征和基于分层LBP特征的分层HOG特征,... 针对LBP描述子提取的纹理特征有限且不能有效地描述图像边缘和方向信息的问题,提出了LBP和HOG的分层特征融合的方法.首先利用LBP算子提取图像的分层纹理谱特征,然后利用HOG算子提取原始图像的边缘特征和基于分层LBP特征的分层HOG特征,最后将分层LBP特征分别与2种HOG边缘特征融合,得到2种不同的多层融合特征.通过在ORL,Yale和GT人脸库上进行实验,比较了15种算法的识别性能,结果证明了文中方法的有效性;相对于传统的经典降维算法、单一的LBP特征提取算法和HOG特征提取算法,该方法的识别率有很大的提高,分别达到99%,99.5%和99.14%. 展开更多
关键词 人脸识别 局部二值模式 梯度方向直方图 分层特征 特征提取
下载PDF
上一页 1 2 30 下一页 到第
使用帮助 返回顶部