The Central Government is allowing all provincial governments to issue local bonds to help finance the construction of public welfare facilities. But so far investors haven’t shown much interest in the bonds-the firs...The Central Government is allowing all provincial governments to issue local bonds to help finance the construction of public welfare facilities. But so far investors haven’t shown much interest in the bonds-the first of their kind to be issued in China. Ni Xiaolin, a senior commentator at Xinhua News Agency, discusses why in the following article she wrote for Beijing Review.展开更多
The packaging poses a critical challenge for commercialization of MEMS products. Major problems with the packaging process include degraded reliability caused by the excess stress due to thermal mismatch and altered p...The packaging poses a critical challenge for commercialization of MEMS products. Major problems with the packaging process include degraded reliability caused by the excess stress due to thermal mismatch and altered performance of the MEMS device after packaging caused by thermal exposure. The localized laser bonding technique for ceramic MEMS packaging to address above-mentioned challenges was investigated. A continuous wave CO2 laser was used to locally heat sealing material for ceramic MEMS package lid to substrate bonding. To determine the laser power density and scanning speed, finite element analysis thermal models were constructed to simulate the localized laser bonding process. Further, the effect of external pressure at sealing ring on the bonding formation was studied. Pull testing results show that the scanning speed and external pressure have significant influence on the pull strength at the bonding interface. Cross-sectional microscopy of the bonding interface indicates that the packages bonded with relatively low scanning speed and external pressure conditions have higher bonding quality. This research demonstrates the potential of localized laser bonding process for ceramic MEMS packaging.展开更多
The canonical and locatized molecutar orbiters of [NCCuS_2NoS_2]^(2-) cluster were calculated by means of CNDO quantum chemistry method. Then the energy and properties of corresponding chemicat bonds were discussed, e...The canonical and locatized molecutar orbiters of [NCCuS_2NoS_2]^(2-) cluster were calculated by means of CNDO quantum chemistry method. Then the energy and properties of corresponding chemicat bonds were discussed, especially, Cu-Sb-No three center conjugated π bonds and No-St-No conjugated π bonds were accounted for.展开更多
With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated...With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated through the logical method of establishing an accurate mechanical equilibrium equation describing the molecular structure, then solving the strict solutions of this mechanical equation and the corresponding wave equation. The results (bond length and dissociation energy) are in good agreement with observed results—i.e. if it is only coincidence, there should not be such a high probability of agreement between calculated and observed results. The method of local realism quantum mechanics is no longer the semi-empirical method. The method to calculate the electron pairing energy uses a linear regression of the ionization energy obtained through experiment. Nonetheless, it is exciting that there are diatomic molecules such as Na2, K2 and asymmetric HF molecules that possess a non-zero non-bonding electron number in the calculation examples. Moreover, the molecular structures are very intuitive, and the calculation method is much simpler than existing methods.展开更多
Local chemistry plays an important role in determining the cohesive strength of grain boundaries in Ni3Al. Doping with B increases the room temperature ductility and changes the fracture mode from intergranular to tra...Local chemistry plays an important role in determining the cohesive strength of grain boundaries in Ni3Al. Doping with B increases the room temperature ductility and changes the fracture mode from intergranular to transgranular, while doping with Zr increases the ductility but leaves the fracture mode predominantly intergranular.Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDS) were used to probe the changes in local bonding (and hence the cohesive strength) produced by changes in local chemistry at large angle boundaries in Ni3Al.In addition , small angle tilt boundaries were studied to correlate structure with Nienrichment at the interface. B segregation to Ni-rich grain boundaries was shown to make the bonding similar to that of the bulk, thereby increasing their fracture resistance. Ni-enrichment does not occur in the presence of Zr segregation to grain boundaries. Ni-enrichment to antiphase boundaries (APB) in small angle tilt boundaries lowers the APB energy by reducing the number of high energy Al-Al interactions across the interface. Ni-enrichment to large angle boundaries is expected to produce a similar effect on energy.展开更多
Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has prove...Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.展开更多
The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used ...The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.展开更多
Hole-net structure silicon is fabricated by laser irradiation and annealing, on which a photoluminescence (PL) band in a the region of 650-750 nm is pinned and its intensity increases obviously after oxidation. It i...Hole-net structure silicon is fabricated by laser irradiation and annealing, on which a photoluminescence (PL) band in a the region of 650-750 nm is pinned and its intensity increases obviously after oxidation. It is found that the PL intensity changes with both laser irradiation time and annealing time. Calculations show that some localized states appear in the band gap of the smaller nanocrystal when Silo bonds or Si-O-Si bonds are passivated on the surface. It is discovered that the density and the number of Si=O bonds or Si-O-Si bonds related to both the irradiation time and the annealing time obviously affect the generation of the localized gap states of hole-net silicon, by which the production of stimulated emission through controlling oxidation time can be explained.展开更多
Using ab initio density functional theory calculations, the electron localization function (ELF) of typical transition metal carbide TiC and nitride TiN were computed and analyzed to reveal their nature of the chemica...Using ab initio density functional theory calculations, the electron localization function (ELF) of typical transition metal carbide TiC and nitride TiN were computed and analyzed to reveal their nature of the chemical bonds. The ELF approach was initially validated through typical examples of covalent-bonding Diamond (C) and ionic-bonding sodium chloride NaCl. Our results clearly demonstrate the dominantly ionic bonding characteristics of TiC and TiN. It is also suggested that the high mechanical hardness of TiC and TiN can be explained without evoking strong covalence.展开更多
Density functional theory(DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation.A comprehensive description of the reaction mechanisms leading to two different r...Density functional theory(DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation.A comprehensive description of the reaction mechanisms leading to two different reaction products is presented.We report a complete exploration of the potential energy surfaces by taking into consideration different spin states.In addition,the intermediate and transition states along the reaction paths are characterized.Total,partial,and overlap population density of state diagrams and analyses are also presented.Furthermore,the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function(ELF) and Mayer bond order.Infrared spectrum(IR) is obtained and further discussed based on the optimized geometries.展开更多
文摘The Central Government is allowing all provincial governments to issue local bonds to help finance the construction of public welfare facilities. But so far investors haven’t shown much interest in the bonds-the first of their kind to be issued in China. Ni Xiaolin, a senior commentator at Xinhua News Agency, discusses why in the following article she wrote for Beijing Review.
文摘The packaging poses a critical challenge for commercialization of MEMS products. Major problems with the packaging process include degraded reliability caused by the excess stress due to thermal mismatch and altered performance of the MEMS device after packaging caused by thermal exposure. The localized laser bonding technique for ceramic MEMS packaging to address above-mentioned challenges was investigated. A continuous wave CO2 laser was used to locally heat sealing material for ceramic MEMS package lid to substrate bonding. To determine the laser power density and scanning speed, finite element analysis thermal models were constructed to simulate the localized laser bonding process. Further, the effect of external pressure at sealing ring on the bonding formation was studied. Pull testing results show that the scanning speed and external pressure have significant influence on the pull strength at the bonding interface. Cross-sectional microscopy of the bonding interface indicates that the packages bonded with relatively low scanning speed and external pressure conditions have higher bonding quality. This research demonstrates the potential of localized laser bonding process for ceramic MEMS packaging.
文摘The canonical and locatized molecutar orbiters of [NCCuS_2NoS_2]^(2-) cluster were calculated by means of CNDO quantum chemistry method. Then the energy and properties of corresponding chemicat bonds were discussed, especially, Cu-Sb-No three center conjugated π bonds and No-St-No conjugated π bonds were accounted for.
文摘With local realism quantum mechanics established, we can simply describe an extranuclear electron as a large-scale elastic ring with an elastic phase trajectory. Several small molecules can thus be strictly calculated through the logical method of establishing an accurate mechanical equilibrium equation describing the molecular structure, then solving the strict solutions of this mechanical equation and the corresponding wave equation. The results (bond length and dissociation energy) are in good agreement with observed results—i.e. if it is only coincidence, there should not be such a high probability of agreement between calculated and observed results. The method of local realism quantum mechanics is no longer the semi-empirical method. The method to calculate the electron pairing energy uses a linear regression of the ionization energy obtained through experiment. Nonetheless, it is exciting that there are diatomic molecules such as Na2, K2 and asymmetric HF molecules that possess a non-zero non-bonding electron number in the calculation examples. Moreover, the molecular structures are very intuitive, and the calculation method is much simpler than existing methods.
文摘Local chemistry plays an important role in determining the cohesive strength of grain boundaries in Ni3Al. Doping with B increases the room temperature ductility and changes the fracture mode from intergranular to transgranular, while doping with Zr increases the ductility but leaves the fracture mode predominantly intergranular.Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDS) were used to probe the changes in local bonding (and hence the cohesive strength) produced by changes in local chemistry at large angle boundaries in Ni3Al.In addition , small angle tilt boundaries were studied to correlate structure with Nienrichment at the interface. B segregation to Ni-rich grain boundaries was shown to make the bonding similar to that of the bulk, thereby increasing their fracture resistance. Ni-enrichment does not occur in the presence of Zr segregation to grain boundaries. Ni-enrichment to antiphase boundaries (APB) in small angle tilt boundaries lowers the APB energy by reducing the number of high energy Al-Al interactions across the interface. Ni-enrichment to large angle boundaries is expected to produce a similar effect on energy.
基金Supported by National Natural Science Foundation of China(Grant No.51705491)
文摘Thermal self-compressing bonding(TSCB) is a new solid-state bonding method pioneered by the authors. With electron beam as the non-melted heat source, previous experimental study performed on titanium alloys has proved the feasibility of TSCB. However, the thermal stress–strain process during bonding, which is of very important significance in revealing the mechanism of TSCB, was not analysed. In this paper, finite element analysis method is adopted to numerically study the thermal elasto-plastic stress–strain cycle of thermal self-compressing bonding. It is found that due to the localized heating, a non-uniform temperature distribution is formed during bonding, with the highest temperature existed on the bond interface. The expansion of high temperature materials adjacent to the bond interface are restrained by surrounding cool materials and rigid restraints, and thus an internal elasto-plastic stress–strain field is developed by itself which makes the bond interface subjected to thermal compressive action. This thermal self-compressing action combined with the high temperature on the bond interface promotes the atom diffusion across the bond interface to produce solid-state joints. Due to the relatively large plastic deformation, rigid restraint TSCB obtains sound joints in relatively short time compared to diffusion bonding.
文摘The concept of resonance-assisted hydrogen bonds(RAHBs)highlights the synergistic interplay between theπ-resonance and hydrogen bonding interactions.This concept has been well-accepted in academia and is widely used in practice.However,it has been argued that the seemingly enhanced intramolecular hydrogen bonding(IMHB)in unsaturated compounds may simply be a result of the constraints imposed by theσ-skeleton framework.Thus,it is crucial to estimate the strength of IMHBs.In this work,we used two approaches to probe the resonance effect and estimate the strength of the IMHBs in the two exemplary cases of the enol forms of acetylacetone and o-hydroxyacetophenone.One approach is the block-localized wavefunction(BLW)method,which is a variant of the ab initio valence bond(VB)theory.Using this approach,it is possible to derive the geometries and energetics with resonance shut down.The other approach is Edmiston’s truncated localized molecular orbital(TLMO)technique,which monitors the energy changes by removing the delocalization tails from localized molecular orbitals.The integrated BLW and TLMO studies confirmed that the hydrogen bonding in these two molecules is indeed enhanced byπ-resonance,and that this enhancement is not a result ofσconstraints.
基金Project supported by the National Natural Science Foundation of China (Grant No 10764002)
文摘Hole-net structure silicon is fabricated by laser irradiation and annealing, on which a photoluminescence (PL) band in a the region of 650-750 nm is pinned and its intensity increases obviously after oxidation. It is found that the PL intensity changes with both laser irradiation time and annealing time. Calculations show that some localized states appear in the band gap of the smaller nanocrystal when Silo bonds or Si-O-Si bonds are passivated on the surface. It is discovered that the density and the number of Si=O bonds or Si-O-Si bonds related to both the irradiation time and the annealing time obviously affect the generation of the localized gap states of hole-net silicon, by which the production of stimulated emission through controlling oxidation time can be explained.
文摘Using ab initio density functional theory calculations, the electron localization function (ELF) of typical transition metal carbide TiC and nitride TiN were computed and analyzed to reveal their nature of the chemical bonds. The ELF approach was initially validated through typical examples of covalent-bonding Diamond (C) and ionic-bonding sodium chloride NaCl. Our results clearly demonstrate the dominantly ionic bonding characteristics of TiC and TiN. It is also suggested that the high mechanical hardness of TiC and TiN can be explained without evoking strong covalence.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21371160,21401173,and 11364023)
文摘Density functional theory(DFT) calculations are performed to investigate the reactivity of Th atom toward ethane C–C bond activation.A comprehensive description of the reaction mechanisms leading to two different reaction products is presented.We report a complete exploration of the potential energy surfaces by taking into consideration different spin states.In addition,the intermediate and transition states along the reaction paths are characterized.Total,partial,and overlap population density of state diagrams and analyses are also presented.Furthermore,the natures of the chemical bonding of intermediate and transition states are studied by using topological method combined with electron localization function(ELF) and Mayer bond order.Infrared spectrum(IR) is obtained and further discussed based on the optimized geometries.