期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Local chemical ordering coordinated thermal stability of nanograined high-entropy alloys 被引量:8
1
作者 Hong-Hui Wu Lin-Shuo Dong +5 位作者 Shui-Ze Wang Gui-Lin Wu Jun-Heng Gao Xu-Sheng Yang Xiao-Ye Zhou Xin-Ping Mao 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1645-1655,共11页
Nanograined(NG)materials often suffer from low thermal stability owing to the high volume fraction of grain boundaries(GBs).Herein,we investigate the possibility of utilizing local chemical ordering(LCO)for improving ... Nanograined(NG)materials often suffer from low thermal stability owing to the high volume fraction of grain boundaries(GBs).Herein,we investigate the possibility of utilizing local chemical ordering(LCO)for improving the thermal stability of NG FeCoNiCrMn highentropy alloys(HE As).NG HE As with two different grain sizes were considered.Tensile tests and creep test simulations were then performed to reveal the influence of LCO on the mechanical properties and thermal stability of NG HE As.After performing hybrid molecular dynamics and Monte Carlo simulations,Cr atoms were found to accumulate at GBs.By analyzing the atomic structure evolution during the deformation process,we found that the formation of LCO effectively stabilized the GBs and inhibited GB movement.In addition,dislocation nucleation from GBs and dislocation movement was also hindered.The inhibiting effect of LCO on GB movement and dislocation activity is more prominent than in the NG model with smaller grain sizes.The current simulation results suggest a possible strategy for enhancing the thermal stability of NG HEAs for service in a high-temperature environment. 展开更多
关键词 High-entropy alloys(HEAs) local chemical ordering(LCO) Molecular dynamics(MD)simulation Monte Carlo(MC)approach
原文传递
Local chemical ordering and its impact on radiation damage behavior of multi-principal element alloys 被引量:2
2
作者 Leqing Liu Xiongjun Liu +4 位作者 Qing Du Hui Wang Yuan Wu Suihe Jiang Zhaoping Lu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第4期13-25,共13页
Multi-principal element alloys(MPEAs)have attracted much attention as future nuclear materials due to their extraordinary radiation resistances.In this work,we have elucidated the development of local chemical orderin... Multi-principal element alloys(MPEAs)have attracted much attention as future nuclear materials due to their extraordinary radiation resistances.In this work,we have elucidated the development of local chemical orderings(LCOs)and their influences on radiation damage behavior in the typical CrFeNi MPEA by hybrid-molecular dynamics and Monte Carlo simulations.It was found that considerable LCOs consist-ing of the Cr-Cr and Ni-Fe short-range orders existed in the ordered configuration with optimized system energy.Through modeling the accumulation cascades up to 1000 recoils,we revealed that the size of de-fect clusters and dislocation loops is smaller in the ordered configuration than those in the random one,although the former formed more Frenkel pairs(i.e.,self-interstitials and vacancies).In addition,the dis-tribution of dislocation loops is relatively more dispersed in the ordered configuration,and the stair-rod dislocations related to irradiation swelling are also smaller,implying that the existence of LCOs is con-ducive to enhancing radiation damage tolerance.To understand the underlying mechanism,the effects of LCOs on the formation and evolution of defects and radiation resistance were discussed from the aspects of atomic bonding,migration path,and energy of defect diffusion,which provides theoretical guidance for the design of MPEAs with enhanced radiation resistance. 展开更多
关键词 Multi-principal element alloys local chemical ordering Radiation damage Dislocation evolution Molecular dynamics simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部