During the design of pipeline,the determination of local resistant coefficient is often come arcoss.The sudden enlargement local resistant coefficient ξ 1=1-A 1A 2 2 is determined through theory.In the paper,the ...During the design of pipeline,the determination of local resistant coefficient is often come arcoss.The sudden enlargement local resistant coefficient ξ 1=1-A 1A 2 2 is determined through theory.In the paper,the sudden enlargement local resistant coefficient under the conditions of three kinds of A 1A 2 was studied in experiment.In the end ,the result shows that ξ 1 is related not only to two flow cross sections,but also to the velocity.Through experimental research,the relationship between ξ 1,A 1A 2 and V 1 was determined.In a word,the hydraulic calculation of pipeline can be done by taking correspondent ξ 1 ,according to the design velocity V 1 and A 1A 2.展开更多
We consider a McKean Vlasov backward stochastic differential equation(MVBSDE) of the form Y_(t)=-F(t,Y_(t),Z_(t),[Y_(t)]) dt+Z_(t) dB_(t),Y_(T)=ξ,where [Y_(t)] stands for the law of Y,.We show that if F is locally mo...We consider a McKean Vlasov backward stochastic differential equation(MVBSDE) of the form Y_(t)=-F(t,Y_(t),Z_(t),[Y_(t)]) dt+Z_(t) dB_(t),Y_(T)=ξ,where [Y_(t)] stands for the law of Y,.We show that if F is locally monotone in y,locally Lipschitz with respect to z and law's variable,and the monotonicity and Lipschitz constants κ_(n),L_(n) are such that L_(n)^(2)+κ_(n)^(+)=O(log(N)),then the MVBSDE has a unique stable solution.展开更多
Limitations of difference maps showing circulation anomalies are analyzed, and the definition of the local pattern analogue coefficient (LPAC) is given together with the procedure for constructing such a map, followed...Limitations of difference maps showing circulation anomalies are analyzed, and the definition of the local pattern analogue coefficient (LPAC) is given together with the procedure for constructing such a map, followed by an example illustrating its useful application in circulation anomaly.展开更多
In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses si...In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.展开更多
In this paper we investigate the robust estimation of generalized varying coefficient models in which the unknown regression coefficients may change with different explanatory variables. Based on the B-spline series a...In this paper we investigate the robust estimation of generalized varying coefficient models in which the unknown regression coefficients may change with different explanatory variables. Based on the B-spline series approximation and Walsh-average technique we develop an initial estimator for the unknown regression coefficient functions. By virtue of the initial estimator, the generalized varying coefficient model is reduced to a univariate nonparametric regression model. Then combining the local linear smooth and Walsh average technique we further propose a two-stage local linear Walsh-average estimator for the unknown regression coefficient functions. Under mild assumptions, we establish the large sample theory of the proposed estimators by utilizing the results of U-statistics and shows that the two-stage local linear Walsh-average estimator own an oracle property, namely the asymptotic normality of the two-stage local linear Walsh-average estimator of each coefficient function is not affected by other unknown coefficient functions. Extensive simulation studies are conducted to assess the finite sample performance, and a real example is analyzed to illustrate the proposed method.展开更多
Triadic closure is a simple and fundamental kind of link formulation mechanism in network.Local closure coefficient(LCC),a new network property,is to measure the triadic closure with respect to the fraction of length-...Triadic closure is a simple and fundamental kind of link formulation mechanism in network.Local closure coefficient(LCC),a new network property,is to measure the triadic closure with respect to the fraction of length-2 paths for link prediction.In this paper,a weighted format of LCC(WLCC)is introduced to measure the weighted strength of local triadic structure,and a statistic similari-ty-based link prediction metric is proposed to incorporate the definition of WLCC.To prove the metrics effectiveness and scalability,the WLCC formula-tion was further investigated under weighted local Naive Bayes(WLNB)link prediction framework.Finally,extensive experimental studies was conducted with weighted baseline metrics on various public network datasets.The results demonstrate the merits of the proposed metrics in comparison with the weighted baselines.展开更多
In winter,rivers in cold regions often experience flood disasters resulted from ice jams or ice dams.Investigations of the variation of ice jam thickness and water level during an ice jammed period are not only a prac...In winter,rivers in cold regions often experience flood disasters resulted from ice jams or ice dams.Investigations of the variation of ice jam thickness and water level during an ice jammed period are not only a practical need for ice prevention to avoid disaster and plan water resource,but also essential for the development of any mathematical model for predicting the evolution of ice jam.So far,some equations based on the energy equation have been proposed to describe the relationship between ice jam thickness and water level.However,in the derivation of these equations,the local head loss coefficient at the ice jam head and the riverbed slope factor were neglected.Obviously,those reported equations cannot be used to preciously describe the flow energy equation with ice jams and accurately calculate the ice jam thickness and water level.In the present study,a more comprehensive theoretical model for hydraulic calculation of ice jam thickness has been derived by considering important and essential factors including riverbed slope and local head loss coefficient at the ice jam head.Furthermore,based on the data collected from laboratory experiments of ice jam accumulation,the local head loss coefficient at the ice jam head has been calculated,and the empirical equation for calculating the local head loss coefficient has been established by considering flow Froude number and the ratio of ice discharge to flow discharge.The results of this study not only provide a new reference for calculating ice jam thickness and water level,but also present a theoretical basis for accurate CFD simulation of ice jams.展开更多
This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By emp...This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing nu- merical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and differcnt diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficicnt. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.展开更多
As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coeffic...As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coefficients are computed from the values of two elements,which reflect only the correlation at a global level.Thus,the spatial details of the correlation structure are ignored.In fact,an element combination anomaly often exists in geological backgrounds,such as on a fault zone or within a lithological unit.This anomaly may cause some combination of anomalies that are submerged inside the overall area and thus cannot be effectively extracted.To address this problem,we propose a local correlation coefficient based on spatial neighbourhoods to reflect the global distribution of elements.In this method,the sampling area is first divided into a set of uniform grid cells.A moving window with a size of 3×3 is defined with an integer of 3 to represent the sampling unit.The local correlation in each unit is expressed by the Pearson correlation coefficient.The whole area is scanned by the moving window,which produces a correlation coefficient matrix,and the result is portrayed with a thermal diagram.The local correlation approach was tested on two selected geochemical soil survey sites in Xiao Mountain,Henan Province.The results show that the areas of high correlation are mainly distributed in the fault zone or the known mineral spots.Therefore,the local correlation method is effective in extracting geochemical element combination anomalies.展开更多
Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions...Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.展开更多
We study the Bredon-IUman cohomology with local coefficients for a G-space X in the case of G being a totally disconnected, locally compact group. We prove that any short exact sequence of equivariant local coefficien...We study the Bredon-IUman cohomology with local coefficients for a G-space X in the case of G being a totally disconnected, locally compact group. We prove that any short exact sequence of equivariant local coefficients systems on X gives a long exact sequence of the associated Bredon-Illman cohomology groups with local coefficients.展开更多
Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as il...Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as illumination change, object occlu- sion, and appearance deformation. To overcome these difficulties, a reliable point assignment (RPA) algorithm based on wavelet transform is proposed. The reliable points are obtained by searching the location that holds local maximal wavelet coefficients. Since the local maximal wavelet coefficients indicate high variation in the image, the reliable points are robust against image noise, illumination change, and appearance deformation. Moreover, a Kalman filter is applied to the detection step to speed up the detection processing and reduce false detection. Finally, the proposed RPA is integrated into the tracking-learning-detection (TLD) framework with the Kalman filter, which not only improves the tracking precision, but also reduces the false detections. Experimental results showed that the new framework outperforms TLD and kernelized correlation filters with respect to precision, f-measure, and average overlap in percent.展开更多
文摘During the design of pipeline,the determination of local resistant coefficient is often come arcoss.The sudden enlargement local resistant coefficient ξ 1=1-A 1A 2 2 is determined through theory.In the paper,the sudden enlargement local resistant coefficient under the conditions of three kinds of A 1A 2 was studied in experiment.In the end ,the result shows that ξ 1 is related not only to two flow cross sections,but also to the velocity.Through experimental research,the relationship between ξ 1,A 1A 2 and V 1 was determined.In a word,the hydraulic calculation of pipeline can be done by taking correspondent ξ 1 ,according to the design velocity V 1 and A 1A 2.
文摘We consider a McKean Vlasov backward stochastic differential equation(MVBSDE) of the form Y_(t)=-F(t,Y_(t),Z_(t),[Y_(t)]) dt+Z_(t) dB_(t),Y_(T)=ξ,where [Y_(t)] stands for the law of Y,.We show that if F is locally monotone in y,locally Lipschitz with respect to z and law's variable,and the monotonicity and Lipschitz constants κ_(n),L_(n) are such that L_(n)^(2)+κ_(n)^(+)=O(log(N)),then the MVBSDE has a unique stable solution.
基金The work is supported by the Research Funds of Long-Range Weather Prediction,State Meteorological Ad.ministration.China
文摘Limitations of difference maps showing circulation anomalies are analyzed, and the definition of the local pattern analogue coefficient (LPAC) is given together with the procedure for constructing such a map, followed by an example illustrating its useful application in circulation anomaly.
基金Foundation item: Supported by the National Natural Science Foundation of China (Nos.51309040, 51379033, 51209027, 51309025), Open Research Fund of State Key Laboratory of Ocean Engineering (Shanghai Jiao Tong University) (Grant No.1402), and Fundamental Research Fund for the Central Universities (DMU3132015089).
文摘In this paper, a numerical study of flow in the turbulence boundary layer with adverse and pressure gradients (APGs) is conducted by using Reynolds-averaged Navier-Stokes (RANS) equations. This research chooses six typical turbulence models, which are critical to the computing precision, and to evaluating the issue of APGs. Local frictional resistance coefficient is compared between numerical and experimental results. The same comparisons of dimensionless averaged velocity profiles are also performed. It is found that results generated by Wilcox (2006) k-co are most close to the experimental data. Meanwhile, turbulent quantities such as turbulent kinetic energy and Reynolds-stress are also studied.
基金Supported by the National Natural Science Foundation of China(NSFC)(No.11471203)the Graduate Innovation Fund of Shanghai University of Finance and Economics(CXJJ-2013-459)
文摘In this paper we investigate the robust estimation of generalized varying coefficient models in which the unknown regression coefficients may change with different explanatory variables. Based on the B-spline series approximation and Walsh-average technique we develop an initial estimator for the unknown regression coefficient functions. By virtue of the initial estimator, the generalized varying coefficient model is reduced to a univariate nonparametric regression model. Then combining the local linear smooth and Walsh average technique we further propose a two-stage local linear Walsh-average estimator for the unknown regression coefficient functions. Under mild assumptions, we establish the large sample theory of the proposed estimators by utilizing the results of U-statistics and shows that the two-stage local linear Walsh-average estimator own an oracle property, namely the asymptotic normality of the two-stage local linear Walsh-average estimator of each coefficient function is not affected by other unknown coefficient functions. Extensive simulation studies are conducted to assess the finite sample performance, and a real example is analyzed to illustrate the proposed method.
基金This work is supported by Basic and Applied Basic Research Foundation of Guangdong Province(No.2020A1515011495)Guangzhou Science and Technology Foundation Project(No.202002030266).
文摘Triadic closure is a simple and fundamental kind of link formulation mechanism in network.Local closure coefficient(LCC),a new network property,is to measure the triadic closure with respect to the fraction of length-2 paths for link prediction.In this paper,a weighted format of LCC(WLCC)is introduced to measure the weighted strength of local triadic structure,and a statistic similari-ty-based link prediction metric is proposed to incorporate the definition of WLCC.To prove the metrics effectiveness and scalability,the WLCC formula-tion was further investigated under weighted local Naive Bayes(WLNB)link prediction framework.Finally,extensive experimental studies was conducted with weighted baseline metrics on various public network datasets.The results demonstrate the merits of the proposed metrics in comparison with the weighted baselines.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3202502)the National Natural Science Foundation Joint Fund of China(Grant No.U2243239).
文摘In winter,rivers in cold regions often experience flood disasters resulted from ice jams or ice dams.Investigations of the variation of ice jam thickness and water level during an ice jammed period are not only a practical need for ice prevention to avoid disaster and plan water resource,but also essential for the development of any mathematical model for predicting the evolution of ice jam.So far,some equations based on the energy equation have been proposed to describe the relationship between ice jam thickness and water level.However,in the derivation of these equations,the local head loss coefficient at the ice jam head and the riverbed slope factor were neglected.Obviously,those reported equations cannot be used to preciously describe the flow energy equation with ice jams and accurately calculate the ice jam thickness and water level.In the present study,a more comprehensive theoretical model for hydraulic calculation of ice jam thickness has been derived by considering important and essential factors including riverbed slope and local head loss coefficient at the ice jam head.Furthermore,based on the data collected from laboratory experiments of ice jam accumulation,the local head loss coefficient at the ice jam head has been calculated,and the empirical equation for calculating the local head loss coefficient has been established by considering flow Froude number and the ratio of ice discharge to flow discharge.The results of this study not only provide a new reference for calculating ice jam thickness and water level,but also present a theoretical basis for accurate CFD simulation of ice jams.
基金supported by Shandong Provincial Natural Science Foundation,China(No.ZR2014JL039)
文摘This paper focuses on the flow characteristic and local resistance of non-Newtonian power law fluid in a curved 90° bend pipe with circular cross-sections, which are widely used in industrial applications. By employing nu- merical simulation and theoretical analysis the properties of the flow and local resistance of power law fluid under different working conditions are obtained. To explore the change rule the experiment is carried out by changing the Reynolds number, the wall roughness and differcnt diameter ratio of elbow pipe. The variation of the local resistance coefficient with the Reynolds number, the diameter ratio and the wall roughness is presented comprehensively in the paper. The results show that the local resistance force coefficient hardly changes with Reynolds number of the power law fluid; the wall roughness has a significant impact on the local resistance coefficicnt. As the pipe wall roughness increasing, the coefficient of local resistance force will increase. The main reason of the influence of the roughness on the local resistance coefficient is the increase of the eddy current region in the power law fluid flow, which increases the kinetic energy dissipation of the main flow. This paper provides theoretical and numerical methods to understand the local resistance property of non-Newtonian power law fluid in elbow pipes.
基金supported by the National Natural Science Foundation of China(Nos.41272359,210100069)。
文摘As direct prospecting data,geochemical data play an important role in modelling prospect potential.Geochemical element assemblage anomalies are usually reflected by the correlation between elements.Correlation coefficients are computed from the values of two elements,which reflect only the correlation at a global level.Thus,the spatial details of the correlation structure are ignored.In fact,an element combination anomaly often exists in geological backgrounds,such as on a fault zone or within a lithological unit.This anomaly may cause some combination of anomalies that are submerged inside the overall area and thus cannot be effectively extracted.To address this problem,we propose a local correlation coefficient based on spatial neighbourhoods to reflect the global distribution of elements.In this method,the sampling area is first divided into a set of uniform grid cells.A moving window with a size of 3×3 is defined with an integer of 3 to represent the sampling unit.The local correlation in each unit is expressed by the Pearson correlation coefficient.The whole area is scanned by the moving window,which produces a correlation coefficient matrix,and the result is portrayed with a thermal diagram.The local correlation approach was tested on two selected geochemical soil survey sites in Xiao Mountain,Henan Province.The results show that the areas of high correlation are mainly distributed in the fault zone or the known mineral spots.Therefore,the local correlation method is effective in extracting geochemical element combination anomalies.
基金the National Natural Science Foundation of China(Grant No.52261135548)the Key Research and Development Program of Shaanxi(Program No.2022KWZ-22)+3 种基金the National Key Research and Development Program of China(Grant Nos.2021YFE0115000 and 2021YFB3800602)Russian Science Foundation(Project No.23-42-00116)the Ural Center for Shared Use“Modern nanotechnology”Ural Federal University(Reg.No.2968)which is supported by the Ministry of Science and Higher Education RF(Project No.075-15-2021-677)was used.The SEM work was done at International Center for Dielectric Research(ICDR),Xi’an Jiaotong University,Xi’an,China.
文摘Rare-earth Sm^(3+)-doped Pb(Mg_(1/3)Nb_(2/3))O_(3)-0.25PbTiO_(3)(PMN-0.25PT)ferroelectric ceramics with doping amounts between 0%-3%were developed via a conventional solid-state method.The doping effect of Sm^(3+)ions on the PMN-0.25PT matrix was systematically investigated on the basis of the phase structure,temperature-dependent dielectric,ferroelectric,and electrotechnical properties.Due to the disruption of long-range ferroelectric order,the addition of Sm^(3+)ions effectively lowers the Tm(temperature corresponding to maximum permittivity)of the samples,leading to enhanced relaxor ferroelectric(RFE)characteristic and superior electric field-induced strain(electrostrain)properties at room temperature.Intriguingly,a considerable large-signal equivalent piezoelectric coefficient d∗_(33)of 2376 pm/V and a very small hysteresis were attained in the PMN-0.25PT component doped with 2.5 mol.%Sm^(3+).The findings of piezoelectric force microscopy indicate that the addition of Sm^(3+)increases the local structural heterogeneity of the PMN-0.25PT matrix and that the enhanced electromechanical performance is due to the dynamic behavior of polar nanoregions.Importantly,strong temperature-dependent electrostrain and electrostrictive coefficient Q33 are observed in the critical region around Tm in all Sm^(3+)-modified PMN-0.25PT ceramic samples studied.This work elucidates the phase transition behavior of Sm^(3+)-doped PMN-0.25PT and reveals a critical region where electrostrictive properties can be greatly improved due to a strong temperature-dependent characteristic.
基金Acknowledgements This work was supported by the Foundation of Shanxi Scholarship Council of China (2011-024), the Foundation of Shanxi Province for Selected Returned Overseas Scholars, and the Natural Science Foundation of Shanxi Province (2013011001-2).
文摘We study the Bredon-IUman cohomology with local coefficients for a G-space X in the case of G being a totally disconnected, locally compact group. We prove that any short exact sequence of equivariant local coefficients systems on X gives a long exact sequence of the associated Bredon-Illman cohomology groups with local coefficients.
基金Project supported by the National Natural Science Foundation of China (Nos. 61671213 and 61302058) and the Guangzhou Key Lab of Body Data Science (No. 201605030011)
文摘Visual tracking, which has been widely used in many vision fields, has been one of the most active research topics in computer vision in recent years. However, there are still challenges in visual tracking, such as illumination change, object occlu- sion, and appearance deformation. To overcome these difficulties, a reliable point assignment (RPA) algorithm based on wavelet transform is proposed. The reliable points are obtained by searching the location that holds local maximal wavelet coefficients. Since the local maximal wavelet coefficients indicate high variation in the image, the reliable points are robust against image noise, illumination change, and appearance deformation. Moreover, a Kalman filter is applied to the detection step to speed up the detection processing and reduce false detection. Finally, the proposed RPA is integrated into the tracking-learning-detection (TLD) framework with the Kalman filter, which not only improves the tracking precision, but also reduces the false detections. Experimental results showed that the new framework outperforms TLD and kernelized correlation filters with respect to precision, f-measure, and average overlap in percent.