The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important re...The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.展开更多
A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.Th...A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.展开更多
In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions...In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions from the set up of a normed space to the case of a Hausdorff locally convex space.展开更多
In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an a...In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.展开更多
A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for...A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for upper semicontinuous set-valued mappings with closed acyclic values and a maximum theorem,several existence theorems of weighted Nath-equilibria and Pareto equilibria for the constrained multiobjective games are proved in noncompact locally convex H-spaces.These theorems improve,unify and generalize the corresponding results of the multiobjective games in recent literatures.展开更多
In this paper, we introduce the concept of locally fully convexity. We study the properties of fully convex and locally fully convex Banach spaces and the relations between them. We also give some applications of the ...In this paper, we introduce the concept of locally fully convexity. We study the properties of fully convex and locally fully convex Banach spaces and the relations between them. We also give some applications of the fully convex and locally fully convex Banach spaces.展开更多
Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can...Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can find a f 0∈E′ and extract subsequences {f n i } and {x n j } such that {f n i } converges to f 0 on {x n j } uniformly. If (E,γ) is metrizable,then we can show that the converse is also valid.展开更多
In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence t...In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].展开更多
In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral ...In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral formula are extended to the locally convex space.展开更多
By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the clo...By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.展开更多
In this paper, we study the characterization of f-Chebyshev radius and f-Chebyshev centers and the existence of f-Chebyshev centers in locally convex spaces.
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
Let Ω be a bounded convex domain in Rn(n≥3) and G(x,y) be the Green function of the Laplace operator -△on Ω Let hPT(Ω) = {f∈D'(Ω) : (?)F ∈ hP(Rn), s.t. F|Ω = f}, by the atom characterization of Local Hard...Let Ω be a bounded convex domain in Rn(n≥3) and G(x,y) be the Green function of the Laplace operator -△on Ω Let hPT(Ω) = {f∈D'(Ω) : (?)F ∈ hP(Rn), s.t. F|Ω = f}, by the atom characterization of Local Hardy spaces in a bounded Lipschitz domain, the bound of f Ω(?)2(Gf) for every f ∈hPr(Ω) is obtained, where n/(n + 1) <p≤1.展开更多
Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments.The filament has 12 different helical forms(phases) characterized by different pitch lengths a...Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments.The filament has 12 different helical forms(phases) characterized by different pitch lengths and helix radii.When subjected to the frictional force of flowing fluid,the filament changes between a left-handed normal phase and a right-handed semi-coiled phase via phase nucleation and growth.This paper develops non-local finite element method(FEM) to simulate the phase transition under a displacement-controlled loading condition(controlled helix-twist).The FEM formulation is based on the Ginzburg-Landau theory using a one-dimensional non-convex and non-local continuum model.To describe the processes of the phase nucleation and growth,viscosity-type kinetics is also used.The non-local FEM simulation captures the main features of the phase transition:two-phase coexistence with an interface of finite thickness,phase nucleation and phase growth with interface propagation.The non-local FEM model provides a tool to study the effects of the interfacial energy/thickness and loading conditions on the phase transition.展开更多
This paper focuses on the sensor subset optimization problem in time difference of arrival(TDOA) passive localization scenario. We seek for the best sensor combination by formulating a non-convex optimization problem,...This paper focuses on the sensor subset optimization problem in time difference of arrival(TDOA) passive localization scenario. We seek for the best sensor combination by formulating a non-convex optimization problem, which is to minimize the trace of covariance matrix of localization error under the condition that the number of selected sensors is given. The accuracy metric is described by the localization error covariance matrix of classical closed-form solution, which is introduced to convert the TDOA nonlinear equations into pseudo linear equations. The non-convex optimization problem is relaxed to a standard semi-definite program(SDP) and efficiently solved in a short time. In addition, we extend the sensor selection method to a mixed TDOA and angle of arrival(AOA) localization scenario with the presence of sensor position errors. Simulation results validate that the performance of the proposed sensor selection method is very close to the exhaustive search method.展开更多
By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize ...By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.展开更多
文摘The aim of this paper is to investigate the differentiability(Gateaux differentiabllity and subdifferentiability) of continuous convex functions on locally convex spaces and to study the behaviour of some important results for this research area in locally convex spaces.
基金Supported by the NSF of China (10071063 and 10471114)
文摘A locally convex space is said to be a Gateaux differentiability space (GDS) provided every continuous convex function defined on a nonempty convex open subset D of the space is densely Gateaux differentiable in .D.This paper shows that the product of a GDS and a family of separable Prechet spaces is a GDS,and that the product of a GDS and an arbitrary locally convex space endowed with the weak topology is a GDS.
文摘In this note we obtain generalization of well known results of carbone and Conti,Sehgal and Singh and Tanimoto concerning the existence of best approximation and simultaneous best approximation of continuous Junctions from the set up of a normed space to the case of a Hausdorff locally convex space.
文摘In this paper, we use the well known KKM type theorem for generalized convex spaces due to Park (Elements of the KKM theory for generalized convex spaces, Korean J. Comp. Appl. Math., 7(2000), 1-28) to obtain an almost fixed point theorem for upper [resp., lower] semicontinuous multimaps in locally G-convex spaces, and then give a fixed point theorem for upper semicontinuous multimap with closed Γ-convex values.
文摘A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for upper semicontinuous set-valued mappings with closed acyclic values and a maximum theorem,several existence theorems of weighted Nath-equilibria and Pareto equilibria for the constrained multiobjective games are proved in noncompact locally convex H-spaces.These theorems improve,unify and generalize the corresponding results of the multiobjective games in recent literatures.
基金Supported by National High Technology Research and Development Program of China (863 Program) (2007AA809502C) National Natural Science Foundation of China (50979093) Program for New Century Excellent Talents in University (NCET-06-0877)
文摘In this paper, we introduce the concept of locally fully convexity. We study the properties of fully convex and locally fully convex Banach spaces and the relations between them. We also give some applications of the fully convex and locally fully convex Banach spaces.
文摘Let (E,γ) be a locally convex space and E′ its conjugate space. AE′ be an equicontinuous set on (E,γ). In this paper,we show that for each sequence {f i}A and {x j}E, if {x j} converges to 0 in (E,γ), then we can find a f 0∈E′ and extract subsequences {f n i } and {x n j } such that {f n i } converges to f 0 on {x n j } uniformly. If (E,γ) is metrizable,then we can show that the converse is also valid.
文摘In this paper we investigate generalized bi quasi variational inequalities in locally convex topological vector spaces. Motivated and inspired by the recent research work in this field,we establish several existence theorems of solutions for generalized bi quasi variational inequalities,which are the extension and improvements of the earlier and recent results obtained previously by many authors including Sun and Ding [18],Chang and Zhang [23] and Zhang [24].
文摘In this paper, the vector-valued regular functions are extended to the locally convex space. The residues theory of the functions in the locally convex space is achieved. Thereby the Cauchy theory and Cauchy integral formula are extended to the locally convex space.
文摘By introducing the notions of L-spaces and L_r-spaces, a complete generalization of Kalton's closed graph theorem is obtained. It points out the class of L_r-spaces is the maximal class of range spaces for the closed graph theorem when the class of domain spaces is the class of Mackey spaces with weakly * sequentially complete dual.Some examples are constructed showing that the class of L_r-spaces is strictly larger than the class of separable B_r-complete spaces.Some properties of L-spaces and L_r-spaces are discussed and the relations between B-complete (resp. B_r-complete) spaces and L-spaces (resp. L_r-spaces) are given.
基金Research supported by the National Science Foundation of P.R.China
文摘In this paper, we study the characterization of f-Chebyshev radius and f-Chebyshev centers and the existence of f-Chebyshev centers in locally convex spaces.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
文摘Let Ω be a bounded convex domain in Rn(n≥3) and G(x,y) be the Green function of the Laplace operator -△on Ω Let hPT(Ω) = {f∈D'(Ω) : (?)F ∈ hP(Rn), s.t. F|Ω = f}, by the atom characterization of Local Hardy spaces in a bounded Lipschitz domain, the bound of f Ω(?)2(Gf) for every f ∈hPr(Ω) is obtained, where n/(n + 1) <p≤1.
基金supported by the Hong Kong University of Science and Technology and the National Natural Science Foundation of China (10902013)
文摘Bacterial flagellar filament can undergo a stress-induced polymorphic phase transition in both vitro and vivo environments.The filament has 12 different helical forms(phases) characterized by different pitch lengths and helix radii.When subjected to the frictional force of flowing fluid,the filament changes between a left-handed normal phase and a right-handed semi-coiled phase via phase nucleation and growth.This paper develops non-local finite element method(FEM) to simulate the phase transition under a displacement-controlled loading condition(controlled helix-twist).The FEM formulation is based on the Ginzburg-Landau theory using a one-dimensional non-convex and non-local continuum model.To describe the processes of the phase nucleation and growth,viscosity-type kinetics is also used.The non-local FEM simulation captures the main features of the phase transition:two-phase coexistence with an interface of finite thickness,phase nucleation and phase growth with interface propagation.The non-local FEM model provides a tool to study the effects of the interfacial energy/thickness and loading conditions on the phase transition.
基金supported by the National Natural Science Foundation of China under Grant (61631015, 61501354 61471395 and 61501356)the Key Scientific and Technological Innovation Team Plan (2016KCT-01)the Fundamental Research Funds of the Ministry of Education (7215433803 and XJS16063)
文摘This paper focuses on the sensor subset optimization problem in time difference of arrival(TDOA) passive localization scenario. We seek for the best sensor combination by formulating a non-convex optimization problem, which is to minimize the trace of covariance matrix of localization error under the condition that the number of selected sensors is given. The accuracy metric is described by the localization error covariance matrix of classical closed-form solution, which is introduced to convert the TDOA nonlinear equations into pseudo linear equations. The non-convex optimization problem is relaxed to a standard semi-definite program(SDP) and efficiently solved in a short time. In addition, we extend the sensor selection method to a mixed TDOA and angle of arrival(AOA) localization scenario with the presence of sensor position errors. Simulation results validate that the performance of the proposed sensor selection method is very close to the exhaustive search method.
文摘By applying a new fixed point theorem due to the author, some new equilibrium existence theorems of quasi-equilibrium problems are proved in noncompact generalized convex spaces. These theorems improve and generalize a number of important known results in recent literature.