In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-depe...In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.展开更多
A meshiess local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based R...A meshiess local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin (RKDG) method. The solutions are reproduced in a set of overlapped spherical sub-domains, and the test functions are employed from a partition of unity of the local basis functions. There is no need of any traditional nonoverlapping mesh either for local approximation purpose or for Galerkin integration purpose in the presented method. The resulting MLDPG method is a meshless, stable, high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM), and it can handle the problems with extremely complicated physics and geometries easily. Three numerical examples of the one-dimensional Sod shock-tube problem, the blast-wave problem and the Woodward-Colella interacting shock wave problem are given. All the numerical results are in good agreement with the closed solutions. The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes.展开更多
In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local disco...In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.展开更多
In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical e...In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.展开更多
Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ...Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research.展开更多
Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models s...Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system,the BBM-BBM system,the Bona-Smith system,etc.We propose local discontinuous Galerkin(LDG)methods,with carefully chosen numerical fluxes,to numerically solve this abcd Boussinesq system.The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a,b,c,d.Numerical experiments are shown to test the convergence rates,and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well.展开更多
In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materi...In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.展开更多
This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discon...This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments.展开更多
Based on the local discontinuous Galerkin methods for time-dependent convection-diffusion systems newly developed by Corkburn and Shu,according to the form of the generalized convection-diffusion equations which model...Based on the local discontinuous Galerkin methods for time-dependent convection-diffusion systems newly developed by Corkburn and Shu,according to the form of the generalized convection-diffusion equations which model the radial porous flow with dispersion and adsorption,a local discontinuous Galerkin method for radial porous flow with dispersion and adsorption was developed,a high order accurary new scheme for radial porous flow is obtained.The presented method was applied to the numerical tests of two cases of radial porous,i.e., the convection-dispersion flow and the convection-dispersion-adsorption flow,the corresponding parts of the numerical results are in good agreement with the published solutions,so the presented method is reliable.Reckoning of the computational cost also shows that the method is practicable.展开更多
In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that th...In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that the error estimates in L;-norm for the solution and the flux are O(h;|log h|)and O(h|log h|;),respectively.In numerical experiments,the successive substitution iterative methods are used to solve the LDG schemes.Numerical results verify the efficiency and accuracy of the method.展开更多
In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finit...In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.展开更多
In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and the...In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.展开更多
This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesia...This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results.展开更多
In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not...In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results.展开更多
For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numeric...For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable.Numerical results indicate the effectiveness and accuracy of the method and con-firm the analysis.展开更多
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many fact...The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.展开更多
The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution varia...The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.展开更多
Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide techni...Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
文摘In this paper,we explore bound preserving and high-order accurate local discontinuous Galerkin(LDG)schemes to solve a class of chemotaxis models,including the classical Keller-Segel(KS)model and two other density-dependent problems.We use the convex splitting method,the variant energy quadratization method,and the scalar auxiliary variable method coupled with the LDG method to construct first-order temporal accurate schemes based on the gradient flow structure of the models.These semi-implicit schemes are decoupled,energy stable,and can be extended to high accuracy schemes using the semi-implicit spectral deferred correction method.Many bound preserving DG discretizations are only worked on explicit time integration methods and are difficult to get high-order accuracy.To overcome these difficulties,we use the Lagrange multipliers to enforce the implicit or semi-implicit LDG schemes to satisfy the bound constraints at each time step.This bound preserving limiter results in the Karush-Kuhn-Tucker condition,which can be solved by an efficient active set semi-smooth Newton method.Various numerical experiments illustrate the high-order accuracy and the effect of bound preserving.
基金Supported by New Century Excellent Talents in University in China(NCET),National"973" Program(No.61338)Innovative Research Project of Xi'an Hi-Tech Institute(EPXY0806)
文摘A meshiess local discontinuous Petrov-Galerkin (MLDPG) method based on the local symmetric weak form (LSWF) is presented with the application to blasting problems. The derivation is similar to that of mesh-based Runge-Kutta Discontinuous Galerkin (RKDG) method. The solutions are reproduced in a set of overlapped spherical sub-domains, and the test functions are employed from a partition of unity of the local basis functions. There is no need of any traditional nonoverlapping mesh either for local approximation purpose or for Galerkin integration purpose in the presented method. The resulting MLDPG method is a meshless, stable, high-order accurate and highly parallelizable scheme which inherits both the advantages of RKDG and meshless method (MM), and it can handle the problems with extremely complicated physics and geometries easily. Three numerical examples of the one-dimensional Sod shock-tube problem, the blast-wave problem and the Woodward-Colella interacting shock wave problem are given. All the numerical results are in good agreement with the closed solutions. The higher-order MLDPG schemes can reproduce more accurate solution than the lower-order schemes.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11261035,11171038,and 10771019)the Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China (Grant No. NJZZ12198)the Natural Science Foundation of Inner Mongolia Autonomous Region,China (Grant No. 2012MS0102)
文摘In this paper,we present the local discontinuous Galerkin method for solving Burgers' equation and the modified Burgers' equation.We describe the algorithm formulation and practical implementation of the local discontinuous Galerkin method in detail.The method is applied to the solution of the one-dimensional viscous Burgers' equation and two forms of the modified Burgers' equation.The numerical results indicate that the method is very accurate and efficient.
基金supported by the National Natural Science Foundation of China(Grant No.11171038)
文摘In the current work, we extend the local discontinuous Galerkin method to a more general application system. The Burgers and coupled Burgers equations are solved by the local discontinuous Galerkin method. Numerical experiments are given to verify the efficiency and accuracy of our method. Moreover the numerical results show that the method can approximate sharp fronts accurately with minimal oscillation.
基金Supported by National Natural Science Foundation of China(Grant No.51405375)National Key Basic Research and Development Program of China(973 Program,Grant No.2011CB706606)
文摘Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research.
基金The work of J.Sun and Y.Xing is partially sponsored by NSF grant DMS-1753581.
文摘Boussinesq type equations have been widely studied to model the surface water wave.In this paper,we consider the abcd Boussinesq system which is a family of Boussinesq type equations including many well-known models such as the classical Boussinesq system,the BBM-BBM system,the Bona-Smith system,etc.We propose local discontinuous Galerkin(LDG)methods,with carefully chosen numerical fluxes,to numerically solve this abcd Boussinesq system.The main focus of this paper is to rigorously establish a priori error estimate of the proposed LDG methods for a wide range of the parameters a,b,c,d.Numerical experiments are shown to test the convergence rates,and to demonstrate that the proposed methods can simulate the head-on collision of traveling wave and finite time blow-up behavior well.
基金Jie Du is supported by the National Natural Science Foundation of China under Grant Number NSFC 11801302Tsinghua University Initiative Scientific Research Program+1 种基金Eric Chung is supported by Hong Kong RGC General Research Fund(Projects 14304217 and 14302018)The third author is supported by the NSF grant DMS-1818467.
文摘In this paper, we study the classical Allen-Cahn equations and investigate the maximum- principle-preserving (MPP) techniques. The Allen-Cahn equation has been widely used in mathematical models for problems in materials science and fluid dynamics. It enjoys the energy stability and the maximum-principle. Moreover, it is well known that the Allen- Cahn equation may yield thin interface layer, and nonuniform meshes might be useful in the numerical solutions. Therefore, we apply the local discontinuous Galerkin (LDG) method due to its flexibility on h-p adaptivity and complex geometry. However, the MPP LDG methods require slope limiters, then the energy stability may not be easy to obtain. In this paper, we only discuss the MPP technique and use numerical experiments to dem-onstrate the energy decay property. Moreover, due to the stiff source given in the equation, we use the conservative modified exponential Runge-Kutta methods and thus can use rela-tively large time step sizes. Thanks to the conservative time integration, the bounds of the unknown function will not decay. Numerical experiments will be given to demonstrate the good performance of the MPP LDG scheme.
文摘This paper studies the time-fractional Korteweg-de Vries (KdV) equations with Caputo-Fabrizio fractional derivatives. The scheme is presented by using a finite difference method in temporal variable and a local discontinuous Galerkin method (LDG) in space. Stability and convergence are demonstrated by a specific choice of numerical fluxes. Finally, the efficiency and accuracy of the scheme are verified by numerical experiments.
文摘Based on the local discontinuous Galerkin methods for time-dependent convection-diffusion systems newly developed by Corkburn and Shu,according to the form of the generalized convection-diffusion equations which model the radial porous flow with dispersion and adsorption,a local discontinuous Galerkin method for radial porous flow with dispersion and adsorption was developed,a high order accurary new scheme for radial porous flow is obtained.The presented method was applied to the numerical tests of two cases of radial porous,i.e., the convection-dispersion flow and the convection-dispersion-adsorption flow,the corresponding parts of the numerical results are in good agreement with the published solutions,so the presented method is reliable.Reckoning of the computational cost also shows that the method is practicable.
基金Supported by National Natural Science Foundation of China(11571002,11461046)Natural Science Foundation of Jiangxi Province,China(20151BAB211013,20161ACB21005)+2 种基金Science and Technology Project of Jiangxi Provincial Department of Education,China(150172)Science Foundation of China Academy of Engineering Physics(2015B0101021)Defense Industrial Technology Development Program(B1520133015)
文摘In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that the error estimates in L;-norm for the solution and the flux are O(h;|log h|)and O(h|log h|;),respectively.In numerical experiments,the successive substitution iterative methods are used to solve the LDG schemes.Numerical results verify the efficiency and accuracy of the method.
基金supported by the State Key Program of National Natural Science Foundation of China(11931003)the National Natural Science Foundation of China(41974133)。
文摘In this paper,a local discontinuous Galerkin(LDG)scheme for the time-fractional diffusion equation is proposed and analyzed.The Caputo time-fractional derivative(of orderα,with 0<α<1)is approximated by a finite difference method with an accuracy of order3-α,and the space discretization is based on the LDG method.For the finite difference method,we summarize and supplement some previous work by others,and apply it to the analysis of the convergence and stability of the proposed scheme.The optimal error estimate is obtained in the L2norm,indicating that the scheme has temporal(3-α)th-order accuracy and spatial(k+1)th-order accuracy,where k denotes the highest degree of a piecewise polynomial in discontinuous finite element space.The numerical results are also provided to verify the accuracy and efficiency of the considered scheme.
文摘In this paper,we develop novel local discontinuous Galerkin(LDG)methods for fractional diffusion equations with non-smooth solutions.We consider such problems,for which the solutions are not smooth at boundary,and therefore the traditional LDG methods with piecewise polynomial solutions suffer accuracy degeneracy.The novel LDG methods utilize a solution information enriched basis,simulate the problem on a paired special mesh,and achieve optimal order of accuracy.We analyze the L2 stability and optimal error estimate in L2-norm.Finally,numerical examples are presented for validating the theoretical conclusions.
基金This research was supported by the NASA Nebraska Space Grant(Federal Grant/Award Number 80NSSC20M0112).
文摘This paper is concerned with convergence and superconvergence properties of the local discontinuous Galerkin(LDG)method for two-dimensional semilinear second-order elliptic problems of the form−Δu=f(x,y,u)on Cartesian grids.By introducing special GaussRadau projections and using duality arguments,we obtain,under some suitable choice of numerical fuxes,the optimal convergence order in L2-norm of O(h^(p+1))for the LDG solution and its gradient,when tensor product polynomials of degree at most p and grid size h are used.Moreover,we prove that the LDG solutions are superconvergent with an order p+2 toward particular Gauss-Radau projections of the exact solutions.Finally,we show that the error between the gradient of the LDG solution and the gradient of a special Gauss-Radau projection of the exact solution achieves(p+1)-th order superconvergence.Some numerical experiments are performed to illustrate the theoretical results.
基金the National Natural Science Foundation of China Grants U1637208 and 71773024.the National Natural Science Foundation of China Grant 11971132.
文摘In this paper,we consider the local discontinuous Galerkin method with generalized alter-nating numerical fluxes for two-dimensional nonlinear Schrödinger equations on Carte-sian meshes.The generalized fluxes not only lead to a smaller magnitude of the errors,but can guarantee an energy conservative property that is useful for long time simulations in resolving waves.By virtue of generalized skew-symmetry property of the discontinuous Galerkin spatial operators,two energy equations are established and stability results con-taining energy conservation of the prime variable as well as auxiliary variables are shown.To derive optimal error estimates for nonlinear Schrödinger equations,an additional energy equation is constructed and two a priori error assumptions are used.This,together with properties of some generalized Gauss-Radau projections and a suitable numerical initial condition,implies optimal order of k+1.Numerical experiments are given to demonstrate the theoretical results.
文摘For two-dimensional(2D)time fractional diffusion equations,we construct a numerical method based on a local discontinuous Galerkin(LDG)method in space and a finite differ-ence scheme in time.We investigate the numerical stability and convergence of the method for both rectangular and triangular meshes and show that the method is unconditionally stable.Numerical results indicate the effectiveness and accuracy of the method and con-firm the analysis.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
基金the Scientific Foundation of National Outstanding Youth of China(No.50225520)the Science Foundation of Shandong University of Technology of China(No.2006KJM33).
文摘The objectives of this study are to employ the meshless local Petrov-Galerkin method (MLPGM) to solve three-dimensional shell problems. The computational accuracy of MLPGM for shell problems is affected by many factors, including the dimension of compact support domain, the dimension of quadrture domain, the number of integral cells and the number of Gauss points. These factors' sensitivity analysis is to adopt the Taguchi experimental design technology and point out the dimension of the quadrature domain with the largest influence on the computational accuracy of the present MLPGM for shells and give out the optimum combination of these factors. A few examples are given to verify the reliability and good convergence of MLPGM for shell problems compared to the theoretical or the finite element results.
文摘The meshless local Petrov_Galerkin (MLPG) method for solving the bending problem of the thin plate were presented and discussed. The method used the moving least_squares approximation to interpolate the solution variables, and employed a local symmetric weak form. The present method was a truly meshless one as it did not need a finite element or boundary element mesh, either for purpose of interpolation of the solution, or for the integration of the energy. All integrals could be easily evaluated over regularly shaped domains (in general, spheres in three_dimensional problems) and their boundaries. The essential boundary conditions were enforced by the penalty method. Several numerical examples were presented to illustrate the implementation and performance of the present method. The numerical examples presented show that high accuracy can be achieved for arbitrary grid geometries for clamped and simply_supported edge conditions. No post processing procedure is required to computer the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.
基金supported by National Natural Science Foundation of China (Grant No. 50905049)Heilongjiang Provincial International Cooperation Project of China (WB06A06)+1 种基金Heilongjiang Provincial Programs for Science and Technology Development of China (GC09A524)Heilongjiang Provincial Postdoctoral Science Foundation of China (LBH-Z09189)
文摘Special transmission 3D model simulation must be based on surface discretization and reconstruction, but special transmission usually has complicated tooth shape and movement, so present software can't provide technical support for special transmission 3D model simulation. Currently, theoretical calculation and experimental method are difficult to exactly solve special transmission contact analysis problem. How to reduce calculation and computer memories consume and meet calculation precision is key to resolve special transmission contact analysis problem. According to 3D model simulation and surface reconstruction of quasi ellipsoid gear is difficulty, this paper employes meshless local Petrov-Galerkin (MLPG) method. In order to reduce calculation and computer memories consume, we disperse tooth mesh into finite points--sparseness points cloud or grid mesh, and then we do interpolation reconstruction in some necessary place of the 3D surface model during analysis. Moving least square method (MLSM) is employed for tooth mesh interpolation reconstruction, there are some advantages to do interpolation by means of MLSM, such as high precision, good flexibility and no require of tooth mesh discretization into units. We input the quasi ellipsoid gear reconstruction model into simulation software, we complete tooth meshing simulation. Simulation transmission ratio during meshing period was obtained, compared with theoretical transmission ratio, the result inosculate preferably. The method using curve reconstruction realizes surface reconstruction, reduce simulation calculation enormously, so special gears simulation can be realized by minitype computer. The method provides a novel solution for special transmission 3D model simulation analysis and contact analysis.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.