Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However...Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However, there is no unified and explicit definition for mountainous areas. The local elevation range(LER) is a crucial structural parameter for delineating mountainous areas. However, current LER products are limited by the subjective selection of an optimum statistical window or coarser spatial resolution of topographical data. In this study, we presented an approach using thresholds for three topographic parameters, elevation, slope, and LER, derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM) to redelineate the vast mountainous areas of mainland Southeast Asia(MSEA). The mean change-point analysis method was applied to determine the optimum statistical window of the 1 arc second(approximately 30 m)-resolution GDEM LER. The results showed that: First, the optimum statistical window is 38 × 38 cell units(width × height) in a rectangular neighborhood, or an area of about 1.30 km^2 for calculating GDEM LER in MSEA. Second, the LER of more than 80% of the area ranges from 30 m to 499 m in MSEA. The LERs in the northern and northwestern MSEA are greater than their counterparts in the south and east. Third, the area of the re-delineated mountainous areas was 83.52 × 10~4 km^2, about 38.71% of the total area. Spatially, the mountainous areas are mainly distributed in the north and northeast of MSEA. The re-delineated 30-m resolution map of the mountainous areas will serve as a topographical dataset for monitoring mountainrelated land surface changes in MSEA. The parameter-modified mountain extraction procedure can be expanded to delineate global mountainous areas.展开更多
In recent years, intensifying waterlogging, salt water intrusion, wetland loss, and ecosystem degradation in Chinese delta cities and adjacent regions have generated the pressing need to create an urban form that is s...In recent years, intensifying waterlogging, salt water intrusion, wetland loss, and ecosystem degradation in Chinese delta cities and adjacent regions have generated the pressing need to create an urban form that is suited to both current and future climates incorporating sea level rise. However, adaptation planning uptake is slow. This is particularly unfortunate because patterns of urban form interact with mean sea level rise (MSLR) in ways that reduce or intensify its impact. There are currently two main barriers that are significant in arresting the implementation of adaptation planning with reference to the MSLR projections composed of geomorphologic MSLR projections and eustatic MSLR projections from global climate warming, and making a comprehensive risk assessment of MSLR projections. The present review shows recent progresses in mapping MSLR projections and their risk assessment approaches on Chinese delta cities, and then a perspective of adapting these cities to MSLR projections as following six aspects. 1) The geomorphologic MSLR projections are contributed by the natural tectonic subsidence projections and the MSLR projections by anthropogenic geomorphologic change. The former needs to be updated in a global framework. The latter is accumulated by land subsidence from underground water depletion, water level fall caused by the erosion of riverbeds from a sediment supply decline attributed to the construction of watershed dams, artificial sand excavation, water level raise by engineering projects including land reclamation, deep waterway regulation, and fresh water reservoirs. 2) Controlling MSLR projections by anthropogenic geomorphologic changes. 3) The IPCC AR5 RCPs MSLRs scenarios are expected to be projected to the local eustatic MSLR projections on the Chinese deltas. 4) The MSLR projections need to be matched to a local elevation datum. 5) Modeling approaches of regional river-sea numerical with semi- analytical hydrodynamics, estuarine channel network, system dynamics and adaptation points are perspective. 6) Adaptation planning to MSLR projections requires a comprehensive risk assessment of the risk of flood, fresh water supply shortage, coastal erosion, wetland loss, siltation of ports and waterway in Chinese delta cities and adjacent regions.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20010203)
文摘Tropical mountainous areas not only provide substantial carbon storage and play an important role in global biological diversity, but also provide basic livelihood for a large number of poor ethnic minorities. However, there is no unified and explicit definition for mountainous areas. The local elevation range(LER) is a crucial structural parameter for delineating mountainous areas. However, current LER products are limited by the subjective selection of an optimum statistical window or coarser spatial resolution of topographical data. In this study, we presented an approach using thresholds for three topographic parameters, elevation, slope, and LER, derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model(ASTER GDEM) to redelineate the vast mountainous areas of mainland Southeast Asia(MSEA). The mean change-point analysis method was applied to determine the optimum statistical window of the 1 arc second(approximately 30 m)-resolution GDEM LER. The results showed that: First, the optimum statistical window is 38 × 38 cell units(width × height) in a rectangular neighborhood, or an area of about 1.30 km^2 for calculating GDEM LER in MSEA. Second, the LER of more than 80% of the area ranges from 30 m to 499 m in MSEA. The LERs in the northern and northwestern MSEA are greater than their counterparts in the south and east. Third, the area of the re-delineated mountainous areas was 83.52 × 10~4 km^2, about 38.71% of the total area. Spatially, the mountainous areas are mainly distributed in the north and northeast of MSEA. The re-delineated 30-m resolution map of the mountainous areas will serve as a topographical dataset for monitoring mountainrelated land surface changes in MSEA. The parameter-modified mountain extraction procedure can be expanded to delineate global mountainous areas.
基金Acknowledgments This study was financially supported by the Shanghai Science and Technology Committee (10dz1210600), the National Sea Welfare Project (201005019-09), the Natural Science Foundation of China (41476075, 41340044), and the China Geological Survey (12120115043101 ).
文摘In recent years, intensifying waterlogging, salt water intrusion, wetland loss, and ecosystem degradation in Chinese delta cities and adjacent regions have generated the pressing need to create an urban form that is suited to both current and future climates incorporating sea level rise. However, adaptation planning uptake is slow. This is particularly unfortunate because patterns of urban form interact with mean sea level rise (MSLR) in ways that reduce or intensify its impact. There are currently two main barriers that are significant in arresting the implementation of adaptation planning with reference to the MSLR projections composed of geomorphologic MSLR projections and eustatic MSLR projections from global climate warming, and making a comprehensive risk assessment of MSLR projections. The present review shows recent progresses in mapping MSLR projections and their risk assessment approaches on Chinese delta cities, and then a perspective of adapting these cities to MSLR projections as following six aspects. 1) The geomorphologic MSLR projections are contributed by the natural tectonic subsidence projections and the MSLR projections by anthropogenic geomorphologic change. The former needs to be updated in a global framework. The latter is accumulated by land subsidence from underground water depletion, water level fall caused by the erosion of riverbeds from a sediment supply decline attributed to the construction of watershed dams, artificial sand excavation, water level raise by engineering projects including land reclamation, deep waterway regulation, and fresh water reservoirs. 2) Controlling MSLR projections by anthropogenic geomorphologic changes. 3) The IPCC AR5 RCPs MSLRs scenarios are expected to be projected to the local eustatic MSLR projections on the Chinese deltas. 4) The MSLR projections need to be matched to a local elevation datum. 5) Modeling approaches of regional river-sea numerical with semi- analytical hydrodynamics, estuarine channel network, system dynamics and adaptation points are perspective. 6) Adaptation planning to MSLR projections requires a comprehensive risk assessment of the risk of flood, fresh water supply shortage, coastal erosion, wetland loss, siltation of ports and waterway in Chinese delta cities and adjacent regions.