How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle co...How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.展开更多
A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental...A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme.展开更多
Inspired by the tremendous achievements of meta-learning in various fields,this paper proposes the local quadratic embedding learning(LQEL)algorithm for regression problems based on metric learning and neural networks...Inspired by the tremendous achievements of meta-learning in various fields,this paper proposes the local quadratic embedding learning(LQEL)algorithm for regression problems based on metric learning and neural networks(NNs).First,Mahalanobis metric learning is improved by optimizing the global consistency of the metrics between instances in the input and output space.Then,we further prove that the improved metric learning problem is equivalent to a convex programming problem by relaxing the constraints.Based on the hypothesis of local quadratic interpolation,the algorithm introduces two lightweight NNs;one is used to learn the coefficient matrix in the local quadratic model,and the other is implemented for weight assignment for the prediction results obtained from different local neighbors.Finally,the two sub-mod els are embedded in a unified regression framework,and the parameters are learned by means of a stochastic gradient descent(SGD)algorithm.The proposed algorithm can make full use of the information implied in target labels to find more reliable reference instances.Moreover,it prevents the model degradation caused by sensor drift and unmeasurable variables by modeling variable differences with the LQEL algorithm.Simulation results on multiple benchmark datasets and two practical industrial applications show that the proposed method outperforms several popular regression methods.展开更多
基金National Key Science & Technology Special Projects(Grant No.2008ZX05000-004)CNPC Projects(Grant No.2008E-0610-10).
文摘How to extract optimal composite attributes from a variety of conventional seismic attributes to detect reservoir features is a reservoir predication key,which is usually solved by reducing dimensionality.Principle component analysis(PCA) is the most widely-used linear dimensionality reduction method at present.However,the relationships between seismic attributes and reservoir features are non-linear,so seismic attribute dimensionality reduction based on linear transforms can't solve non-linear problems well,reducing reservoir prediction precision.As a new non-linear learning method,manifold learning supplies a new method for seismic attribute analysis.It can discover the intrinsic features and rules hidden in the data by computing low-dimensional,neighborhood-preserving embeddings of high-dimensional inputs.In this paper,we try to extract seismic attributes using locally linear embedding(LLE),realizing inter-horizon attributes dimensionality reduction of 3D seismic data first and discuss the optimization of its key parameters.Combining model analysis and case studies,we compare the dimensionality reduction and clustering effects of LLE and PCA,both of which indicate that LLE can retain the intrinsic structure of the inputs.The composite attributes and clustering results based on LLE better characterize the distribution of sedimentary facies,reservoir,and even reservoir fluids.
基金supported by the Fundamental Research Funds for the Central Universities(No.2016083)
文摘A fault detection method based on incremental locally linear embedding(LLE)is presented to improve fault detecting accuracy for satellites with telemetry data.Since conventional LLE algorithm cannot handle incremental learning,an incremental LLE method is proposed to acquire low-dimensional feature embedded in high-dimensional space.Then,telemetry data of Satellite TX-I are analyzed.Therefore,fault detection are performed by analyzing feature information extracted from the telemetry data with the statistical indexes T2 and squared prediction error(SPE)and SPE.Simulation results verify the fault detection scheme.
基金supported by the National Key Research and Development Program of China(2016YFB0303401)the International(Regional)Cooperation and Exchange Project(61720106008)+1 种基金the National Science Fund for Distinguished Young Scholars(61725301)the Shanghai AI Lab。
文摘Inspired by the tremendous achievements of meta-learning in various fields,this paper proposes the local quadratic embedding learning(LQEL)algorithm for regression problems based on metric learning and neural networks(NNs).First,Mahalanobis metric learning is improved by optimizing the global consistency of the metrics between instances in the input and output space.Then,we further prove that the improved metric learning problem is equivalent to a convex programming problem by relaxing the constraints.Based on the hypothesis of local quadratic interpolation,the algorithm introduces two lightweight NNs;one is used to learn the coefficient matrix in the local quadratic model,and the other is implemented for weight assignment for the prediction results obtained from different local neighbors.Finally,the two sub-mod els are embedded in a unified regression framework,and the parameters are learned by means of a stochastic gradient descent(SGD)algorithm.The proposed algorithm can make full use of the information implied in target labels to find more reliable reference instances.Moreover,it prevents the model degradation caused by sensor drift and unmeasurable variables by modeling variable differences with the LQEL algorithm.Simulation results on multiple benchmark datasets and two practical industrial applications show that the proposed method outperforms several popular regression methods.