期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于Local Cascade Ensemble方法的胎儿健康自动分类
1
作者 黄梅佳 李宗辉 郑博伟 《信息技术与信息化》 2024年第4期122-125,共4页
为更好地自动评估胎儿宫内状态,提出一种基于local cascade ensemble(LCE)方法的胎儿健康状态分类模型。选用UCI数据集,使用ADASYN方法对不平衡数据集进行填充平衡,接着结合随机森林算法对数据特征进行选择,最后使用LCE方法对胎儿状态... 为更好地自动评估胎儿宫内状态,提出一种基于local cascade ensemble(LCE)方法的胎儿健康状态分类模型。选用UCI数据集,使用ADASYN方法对不平衡数据集进行填充平衡,接着结合随机森林算法对数据特征进行选择,最后使用LCE方法对胎儿状态进行自动分类。实验结果表明,所提出模型使用的方法平均准确率、精确率、召回率和F1分数分别达到了0.9554、0.9054、0.9557和0.9290,对比传统的机器学习算法能得到更好的分类效果,有效降低了误判率。 展开更多
关键词 机器学习 胎儿监护 自动分类 local Cascade ensemble
下载PDF
Assimilating satellite SST/SSH and in-situ T/S profiles with the Localized Weighted Ensemble Kalman Filter 被引量:1
2
作者 Meng Shen Yan Chen +1 位作者 Pinqiang Wang Weimin Zhang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第2期26-40,共15页
The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has gre... The Localized Weighted Ensemble Kalman Filter(LWEnKF)is a new nonlinear/non-Gaussian data assimilation(DA)method that can effectively alleviate the filter degradation problem faced by particle filtering,and it has great prospects for applications in geophysical models.In terms of operational applications,along-track sea surface height(AT-SSH),swath sea surface temperature(S-SST)and in-situ temperature and salinity(T/S)profiles are assimilated using the LWEnKF in the northern South China Sea(SCS).To adapt to the vertical S-coordinates of the Regional Ocean Modelling System(ROMS),a vertical localization radius function is designed for T/S profiles assimilation using the LWEnKF.The results show that the LWEnKF outperforms the local particle filter(LPF)due to the introduction of the Ensemble Kalman Filter(EnKF)as a proposal density;the RMSEs of SSH and SST from the LWEnKF are comparable to the EnKF,but the RMSEs of T/S profiles reduce significantly by approximately 55%for the T profile and 35%for the S profile(relative to the EnKF).As a result,the LWEnKF makes more reasonable predictions of the internal ocean temperature field.In addition,the three-dimensional structures of nonlinear mesoscale eddies are better characterized when using the LWEnKF. 展开更多
关键词 data assimilation localized Weighted ensemble Kalman Filter northern South China Sea sea surface height sea surface temperature temperature and salinity profiles mesoscale eddy
下载PDF
Algorithm based on local breeding of growing modes for convection-allowing ensemble forecasting 被引量:3
3
作者 Chaohui CHEN Xiang LI +2 位作者 Hongrang HE Jie XIANG Shenjia MA 《Science China Earth Sciences》 SCIE EI CAS CSCD 2018年第4期462-472,共11页
We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of... We propose a method based on the local breeding of growing modes(LBGM) considering strong local weather characteristics for convection-allowing ensemble forecasting. The impact radius was introduced in the breeding of growing modes to develop the LBGM method. In the local breeding process, the ratio between the root mean square error(RMSE) of local space forecast at each grid point and that of the initial full-field forecast is computed to rescale perturbations. Preliminary evaluations of the method based on a nature run were performed in terms of three aspects: perturbation structure, spread,and the RMSE of the forecast. The experimental results confirm that the local adaptability of perturbation schemes improves after rescaling by the LBGM method. For perturbation physical variables and some near-surface meteorological elements, the LBGM method could increase the spread and reduce the RMSE of forecast,improving the performance of the ensemble forecast system.In addition, different from those existing methods of global orthogonalization approach, this new initial-condition perturbation method takes into full consideration the local characteristics of the convective-scale weather system, thus making convectionallowing ensemble forecast more accurate. 展开更多
关键词 Convection-allowing ensemble forecasting local breeding of growing modes Perturbation structure Spread Root mean square error of forecast
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部